TY - JOUR
T1 - The WiggleZ Dark Energy Survey
T2 - Testing the cosmological model with baryon acoustic oscillations at z= 0.6
AU - Blake, Chris
AU - Davis, Tamara
AU - Poole, Gregory B.
AU - Parkinson, David
AU - Brough, Sarah
AU - Colless, Matthew
AU - Contreras, Carlos
AU - Couch, Warrick
AU - Croom, Scott
AU - Drinkwater, Michael J.
AU - Forster, Karl
AU - Gilbank, David
AU - Gladders, Mike
AU - Glazebrook, Karl
AU - Jelliffe, Ben
AU - Jurek, Russell J.
AU - Li, I. hui
AU - Madore, Barry
AU - Martin, D. Christopher
AU - Pimbblet, Kevin
AU - Pracy, Michael
AU - Sharp, Rob
AU - Wisnioski, Emily
AU - Woods, David
AU - Wyder, Ted K.
AU - Yee, H. K.C.
PY - 2011/8
Y1 - 2011/8
N2 - We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z= 0.6, using the distribution of N= 132509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. The results are mutually consistent, corresponding to a 4.0 per cent measurement of the cosmic distance-redshift relation at z= 0.6 [in terms of the acoustic parameter 'A(z)' introduced by Eisenstein et al., we find A(z= 0.6) = 0.452 ± 0.018]. Both BAOs and power spectrum shape information contribute towards these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2σ. The ratios of our distance measurements to those obtained using BAOs in the distribution of luminous red galaxies at redshifts z= 0.2 and 0.35 are consistent with a flat Λ cold dark matter model that also provides a good fit to the pattern of observed fluctuations in the cosmic microwave background radiation. The addition of the current WiggleZ data results in a ≈30 per cent improvement in the measurement accuracy of a constant equation of state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < -1/3) is required with a probability of 99.8 per cent, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ survey data set is complete.
AB - We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z= 0.6, using the distribution of N= 132509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. The results are mutually consistent, corresponding to a 4.0 per cent measurement of the cosmic distance-redshift relation at z= 0.6 [in terms of the acoustic parameter 'A(z)' introduced by Eisenstein et al., we find A(z= 0.6) = 0.452 ± 0.018]. Both BAOs and power spectrum shape information contribute towards these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2σ. The ratios of our distance measurements to those obtained using BAOs in the distribution of luminous red galaxies at redshifts z= 0.2 and 0.35 are consistent with a flat Λ cold dark matter model that also provides a good fit to the pattern of observed fluctuations in the cosmic microwave background radiation. The addition of the current WiggleZ data results in a ≈30 per cent improvement in the measurement accuracy of a constant equation of state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < -1/3) is required with a probability of 99.8 per cent, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ survey data set is complete.
KW - Cosmological parameters
KW - Dark energy
KW - Large-scale structure of Universe
KW - Surveys
UR - http://www.scopus.com/inward/record.url?scp=79961031568&partnerID=8YFLogxK
U2 - 10.1111/j.1365-2966.2011.19077.x
DO - 10.1111/j.1365-2966.2011.19077.x
M3 - Article
SN - 0035-8711
VL - 415
SP - 2892
EP - 2909
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -