The WiggleZ Dark Energy Survey: The growth rate of cosmic structure since redshift z=0.9

Chris Blake*, Sarah Brough, Matthew Colless, Carlos Contreras, Warrick Couch, Scott Croom, Tamara Davis, Michael J. Drinkwater, Karl Forster, David Gilbank, Mike Gladders, Karl Glazebrook, Ben Jelliffe, Russell J. Jurek, I. hui Li, Barry Madore, D. Christopher Martin, Kevin Pimbblet, Gregory B. Poole, Michael PracyRob Sharp, Emily Wisnioski, David Woods, Ted K. Wyder, H. K.C. Yee

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    450 Citations (Scopus)

    Abstract

    We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of around 10 per cent in four independent redshift bins, are well fitted by a flat Λ cold dark matter (ΛCDM) cosmological model with matter density parameter Ωm= 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic structure through large-scale perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon acoustic oscillations. We achieve robust results by systematically comparing our data with several different models of the quasi-linear growth of structure including empirical models, fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We extract the first measurements of the power spectrum of the velocity divergence field, Pθθ(k), as a function of redshift (under the assumption that, where g is the galaxy overdensity field), and demonstrate that the WiggleZ galaxy-mass cross-correlation is consistent with a deterministic (rather than stochastic) scale-independent bias model for WiggleZ galaxies for scales k < 0.3hMpc-1. Measurements of the cosmic growth rate from the WiggleZ Survey and other current and future observations offer a powerful test of the physical nature of dark energy that is complementary to distance-redshift measures such as supernovae and baryon acoustic oscillations.

    Original languageEnglish
    Pages (from-to)2876-2891
    Number of pages16
    JournalMonthly Notices of the Royal Astronomical Society
    Volume415
    Issue number3
    DOIs
    Publication statusPublished - Aug 2011

    Fingerprint

    Dive into the research topics of 'The WiggleZ Dark Energy Survey: The growth rate of cosmic structure since redshift z=0.9'. Together they form a unique fingerprint.

    Cite this