Theoretical evaluation of structural models of the S 2 state in the oxygen evolving complex of photosystem II: Protonation states and magnetic interactions

William Ames, Dimitrios A. Pantazis, Vera Krewald, Nicholas Cox, Johannes Messinger*, Wolfgang Lubitz, Frank Neese

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

258 Citations (Scopus)


Protonation states of water ligands and oxo bridges are intimately involved in tuning the electronic structures and oxidation potentials of the oxygen evolving complex (OEC) in Photosystem II, steering the mechanistic pathway, which involves at least five redox state intermediates S n (n = 0-4) resulting in the oxidation of water to molecular oxygen. Although protons are practically invisible in protein crystallography, their effects on the electronic structure and magnetic properties of metal active sites can be probed using spectroscopy. With the twin purpose of aiding the interpretation of the complex electron paramagnetic resonance (EPR) spectroscopic data of the OEC and of improving the view of the cluster at the atomic level, a complete set of protonation configurations for the S 2 state of the OEC were investigated, and their distinctive effects on magnetic properties of the cluster were evaluated. The most recent X-ray structure of Photosystem II at 1.9 Å resolution was used and refined to obtain the optimum structure for the Mn 4O 5Ca core within the protein pocket. Employing this model, a set of 26 structures was constructed that tested various protonation scenarios of the water ligands and oxo bridges. Our results suggest that one of the two water molecules that are proposed to coordinate the outer Mn ion (Mn A) of the cluster is deprotonated in the S 2 state, as this leads to optimal experimental agreement, reproducing the correct ground state spin multiplicity (S = 1/2), spin expectation values, and EXAFS-derived metal-metal distances. Deprotonation of Ca 2+-bound water molecules is strongly disfavored in the S 2 state, but dissociation of one of the two water ligands appears to be facile. The computed isotropic hyperfine couplings presented here allow distinctions between models to be made and call into question the assumption that the largest coupling is always attributable to Mn III. The present results impose limits for the total charge and the proton configuration of the OEC in the S 2 state, with implications for the cascade of events in the Kok cycle and for the water splitting mechanism.

Original languageEnglish
Pages (from-to)19743-19757
Number of pages15
JournalJournal of the American Chemical Society
Issue number49
Publication statusPublished - 14 Dec 2011
Externally publishedYes


Dive into the research topics of 'Theoretical evaluation of structural models of the S 2 state in the oxygen evolving complex of photosystem II: Protonation states and magnetic interactions'. Together they form a unique fingerprint.

Cite this