Abstract
A theoretical study into the reactions of the N2O adducts of N-heterocyclic carbenes (NHCs) and a V(III) complex was carried out using DFT calculations. Unlike most transition metal reactions with N2O that simply release N2 following O-atom transfer onto the metal centre, this NHC-based system traps the entire N2O molecule and then cleaves both the N-O and N-N bond in two consecutive reactions. The NHC presence increases the reactivity of N2O by altering the distribution of electron density away from the O-atom towards the two N-atoms. This electronic redistribution enables V-N binding interactions to form a reactive N,O-donor intermediate species. Our results show that bond breaking with concomitant ligand migration occurs via a concerted process for both the N-O and N-N cleavage reactions.
Original language | English |
---|---|
Pages (from-to) | 1047-1054 |
Number of pages | 8 |
Journal | Dalton Transactions |
Volume | 45 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2016 |