TY - JOUR
T1 - Thermal behavior alleviates thermal discomfort during steady-state exercise without affecting whole body heat loss
AU - Vargas, Nicole T.
AU - Chapman, Christopher L.
AU - Johnson, Blair D.
AU - Gathercole, Rob
AU - Cramer, Matthew N.
AU - Schlader, Zachary J.
N1 - Publisher Copyright:
Copyright © 2019 the American Physiological Society.
PY - 2019
Y1 - 2019
N2 - We tested the hypothesis that thermal behavior resulting in reductions in mean skin temperature alleviates thermal discomfort and mitigates the rise in core temperature during light-intensity exercise. In a 27 ± 0°C, 48 ± 6% relative humidity environment, 12 healthy subjects (6 men, 6 women) completed 60 min of recumbent cycling. In both trials, subjects wore a water-perfused suit top continually perfusing 34 ± 0°C water. In the behavior trial, subjects maintained their upper body thermally comfortable by pressing a button to perfuse cool water (2.2 ± 0.5°C) through the top for 2 min per button press. Metabolic heat production (control: 404 ± 52 W, behavior: 397 ± 65 W; P = 0.44) was similar between trials. Mean skin temperature was reduced in the behavior trial (by -2.1 ± 1.8°C, P < 0.01) because of voluntary reductions in water-perfused top temperature (P < 0.01). Whole body (P = 0.02) and local sweat rates were lower in the behavior trial (P ≤ 0.05). Absolute core temperature was similar (P ≥ 0.30); however, the change in core temperature was greater in the behavior trial after 40 min of exercise (P ≤ 0.03). Partitional calorimetry did not reveal any differences in cumulative heat storage (control: 554 ± 229, behavior: 544 ± 283 kJ; P = 0.90). Thermal behavior alleviated whole body thermal discomfort during exercise (by -1.17 ± 0.40 arbitrary units, P < 0.01). Despite lower evaporative cooling in the behavior trial, similar heat loss was achieved by voluntarily employing convective cooling. Therefore, thermal behavior resulting in large reductions in skin temperature is effective at alleviating thermal discomfort during exercise without affecting whole body heat loss. NEW & NOTEWORTHY This study aimed to determine the effectiveness of thermal behavior in maintaining thermal comfort during exercise by allowing subjects to voluntarily cool their torso and upper limbs with 2°C water throughout a light-intensity exercise protocol. We show that voluntary cooling of the upper body alleviates thermal discomfort while maintaining heat balance through convective rather than evaporative means of heat loss.
AB - We tested the hypothesis that thermal behavior resulting in reductions in mean skin temperature alleviates thermal discomfort and mitigates the rise in core temperature during light-intensity exercise. In a 27 ± 0°C, 48 ± 6% relative humidity environment, 12 healthy subjects (6 men, 6 women) completed 60 min of recumbent cycling. In both trials, subjects wore a water-perfused suit top continually perfusing 34 ± 0°C water. In the behavior trial, subjects maintained their upper body thermally comfortable by pressing a button to perfuse cool water (2.2 ± 0.5°C) through the top for 2 min per button press. Metabolic heat production (control: 404 ± 52 W, behavior: 397 ± 65 W; P = 0.44) was similar between trials. Mean skin temperature was reduced in the behavior trial (by -2.1 ± 1.8°C, P < 0.01) because of voluntary reductions in water-perfused top temperature (P < 0.01). Whole body (P = 0.02) and local sweat rates were lower in the behavior trial (P ≤ 0.05). Absolute core temperature was similar (P ≥ 0.30); however, the change in core temperature was greater in the behavior trial after 40 min of exercise (P ≤ 0.03). Partitional calorimetry did not reveal any differences in cumulative heat storage (control: 554 ± 229, behavior: 544 ± 283 kJ; P = 0.90). Thermal behavior alleviated whole body thermal discomfort during exercise (by -1.17 ± 0.40 arbitrary units, P < 0.01). Despite lower evaporative cooling in the behavior trial, similar heat loss was achieved by voluntarily employing convective cooling. Therefore, thermal behavior resulting in large reductions in skin temperature is effective at alleviating thermal discomfort during exercise without affecting whole body heat loss. NEW & NOTEWORTHY This study aimed to determine the effectiveness of thermal behavior in maintaining thermal comfort during exercise by allowing subjects to voluntarily cool their torso and upper limbs with 2°C water throughout a light-intensity exercise protocol. We show that voluntary cooling of the upper body alleviates thermal discomfort while maintaining heat balance through convective rather than evaporative means of heat loss.
KW - Exercise
KW - Heat balance
KW - Skin cooling
KW - Thermoregulatory behavior
UR - http://www.scopus.com/inward/record.url?scp=85073183924&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00379.2019
DO - 10.1152/japplphysiol.00379.2019
M3 - Article
C2 - 31414951
AN - SCOPUS:85073183924
SN - 8750-7587
VL - 127
SP - 984
EP - 994
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 4
ER -