TY - JOUR
T1 - Thermal plasma in the giant lobes of the radio galaxy Centaurus A
AU - O'Sullivan, S. P.
AU - Feain, I. J.
AU - McClure-Griffiths, N. M.
AU - Ekers, R. D.
AU - Carretti, E.
AU - Robishaw, T.
AU - Mao, S. A.
AU - Gaensler, B. M.
AU - Bland-Hawthorn, J.
AU - Stawarz,
PY - 2013/2/20
Y1 - 2013/2/20
N2 - We present a Faraday rotation measure (RM) study of the diffuse, polarized, radio emission from the giant lobes of the nearest radio galaxy, Centaurus A. After removal of the smooth Galactic foreground RM component, using an ensemble of background source RMs located outside the giant lobes, we are left with a residual RM signal associated with the giant lobes. We find that the most likely origin of this residual RM is from thermal material mixed throughout the relativistic lobe plasma. The alternative possibility of a thin-skin/boundary layer of magnetoionic material swept up by the expansion of the lobes is highly unlikely since it requires, at least, an order of magnitude enhancement of the swept-up gas over the expected intragroup density on these scales. Strong depolarization observed from 2.3 to 0.96 GHz also supports the presence of a significant amount of thermal gas within the lobes; although depolarization solely due to RM fluctuations in a foreground Faraday screen on scales smaller than the beam cannot be ruled out. Considering the internal Faraday rotation scenario, we find a thermal gas number density of ∼10-4 cm -3, implying a total gas mass of ∼1010 M ⊙ within the lobes. The thermal pressure associated with this gas (with temperature kT ∼ 0.5 keV, obtained from recent X-ray results) is approximately equal to the non-thermal pressure, indicating that over the volume of the lobes, there is approximate equipartition between the thermal gas, radio-emitting electrons, and magnetic field (and potentially any relativistic protons present).
AB - We present a Faraday rotation measure (RM) study of the diffuse, polarized, radio emission from the giant lobes of the nearest radio galaxy, Centaurus A. After removal of the smooth Galactic foreground RM component, using an ensemble of background source RMs located outside the giant lobes, we are left with a residual RM signal associated with the giant lobes. We find that the most likely origin of this residual RM is from thermal material mixed throughout the relativistic lobe plasma. The alternative possibility of a thin-skin/boundary layer of magnetoionic material swept up by the expansion of the lobes is highly unlikely since it requires, at least, an order of magnitude enhancement of the swept-up gas over the expected intragroup density on these scales. Strong depolarization observed from 2.3 to 0.96 GHz also supports the presence of a significant amount of thermal gas within the lobes; although depolarization solely due to RM fluctuations in a foreground Faraday screen on scales smaller than the beam cannot be ruled out. Considering the internal Faraday rotation scenario, we find a thermal gas number density of ∼10-4 cm -3, implying a total gas mass of ∼1010 M ⊙ within the lobes. The thermal pressure associated with this gas (with temperature kT ∼ 0.5 keV, obtained from recent X-ray results) is approximately equal to the non-thermal pressure, indicating that over the volume of the lobes, there is approximate equipartition between the thermal gas, radio-emitting electrons, and magnetic field (and potentially any relativistic protons present).
KW - galaxies: individual (Centaurus A (NGC 5128))
KW - galaxies: magnetic fields
KW - radio continuum: galaxies
UR - http://www.scopus.com/inward/record.url?scp=84874208994&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/764/2/162
DO - 10.1088/0004-637X/764/2/162
M3 - Article
SN - 0004-637X
VL - 764
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 162
ER -