TY - GEN
T1 - Thermal-structural modelling of TDLAS system for SCRAMSPACE hypersonic flight test
AU - Dasgupta, Arnab
AU - Choudhury, Rishabh
AU - Neely, Andrew
AU - O'Byrne, Sean
AU - Kurtz, Joe
PY - 2012
Y1 - 2012
N2 - A thermal-structural analysis of the TDLAS (Tunable Diode Laser Absorption Spectroscopy) system used on the SCRAMSPACE mission was performed to determine the integrity of the in-flight experiment when subjected to descent heat loads. This analysis is essential for the design of optical sensing equipment, which needs to survive the high temperatures generated in hypersonic flight. Firstly, in-flight temperatures reached by critical electro-optical components due to viscous heating were determined. In addition, the structural viability of the sapphire optical window was analysed to ensure it surpassed requirements at flight heating conditions. Lastly, the effect that in-flight heating has on the optical alignment of the system is currently being investigated. It was found that electronic components will operate within recommended temperature bounds. In addition, numerical and experimental analysis verified the flight worthiness and seal integrity of the sapphire window when subjected to the simulated hypersonic flight conditions.
AB - A thermal-structural analysis of the TDLAS (Tunable Diode Laser Absorption Spectroscopy) system used on the SCRAMSPACE mission was performed to determine the integrity of the in-flight experiment when subjected to descent heat loads. This analysis is essential for the design of optical sensing equipment, which needs to survive the high temperatures generated in hypersonic flight. Firstly, in-flight temperatures reached by critical electro-optical components due to viscous heating were determined. In addition, the structural viability of the sapphire optical window was analysed to ensure it surpassed requirements at flight heating conditions. Lastly, the effect that in-flight heating has on the optical alignment of the system is currently being investigated. It was found that electronic components will operate within recommended temperature bounds. In addition, numerical and experimental analysis verified the flight worthiness and seal integrity of the sapphire window when subjected to the simulated hypersonic flight conditions.
UR - http://www.scopus.com/inward/record.url?scp=84881018244&partnerID=8YFLogxK
U2 - 10.2514/6.2012-5900
DO - 10.2514/6.2012-5900
M3 - Conference contribution
AN - SCOPUS:84881018244
SN - 9781600869310
T3 - 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference 2012
BT - 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference 2012
T2 - 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference 2012
Y2 - 24 September 2012 through 28 September 2012
ER -