Thermodynamic modelling and solar reactor design for syngas production through SCWG of algae

Mahesh B. Venkataraman*, Alireza Rahbari, John Pye

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    9 Citations (Scopus)

    Abstract

    Conversion of algal biomass into value added products, such as liquid fuels, using solar-assisted supercritical water gasification (SCWG) offers a promising approach for clean fuel production. SCWG has significant advantages over conventional gasification in terms of flexibility of feedstock, faster intrinsic kinetics and lower char formation. A relatively unexplored avenue in SCWG is the use of non-renewable source of energy for driving the endothermic gasification. The use of concentrated solar thermal to provide the process heat is attractive, especially in the case of expensive feedstocks such as algae. This study attempts to identify the key parameters and constraints in designing a solar cavity receiver/reactor for on-sun SCWG of algal biomass. A tubular plug-flow reactor, operating at 24 MPa and 400-600 °C with a solar input of 20MWth is modelled. Solar energy is utilized to increase the temperature of the reaction medium (10 wt.% algae solution) from 400 to 605 °C and simultaneously drive the gasification. The model additionally incorporates material constraints based on the allowable stresses for a commercially available Ni-based alloy (Inconel 625), and exergy accounting for the cavity reactor. A parametric evaluation of the steady state performance and quantification of the losses through wall conduction, external radiation and convection, internal convection, frictional pressure drop, mixing and chemical irreversibility, is presented.

    Original languageEnglish
    Title of host publicationSolarPACES 2016
    Subtitle of host publicationInternational Conference on Concentrating Solar Power and Chemical Energy Systems
    PublisherAmerican Institute of Physics Inc.
    ISBN (Electronic)9780735415225
    DOIs
    Publication statusPublished - 27 Jun 2017
    Event22nd International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2016 - Abu Dhabi, United Arab Emirates
    Duration: 11 Oct 201614 Oct 2016

    Publication series

    NameAIP Conference Proceedings
    Volume1850
    ISSN (Print)0094-243X
    ISSN (Electronic)1551-7616

    Conference

    Conference22nd International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2016
    Country/TerritoryUnited Arab Emirates
    CityAbu Dhabi
    Period11/10/1614/10/16

    Fingerprint

    Dive into the research topics of 'Thermodynamic modelling and solar reactor design for syngas production through SCWG of algae'. Together they form a unique fingerprint.

    Cite this