Abstract
Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles, made by flame spray pyrolysis, as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostics. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber is discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions.
Original language | English |
---|---|
Article number | 037109 |
Journal | Journal of Breath Research |
Volume | 5 |
Issue number | 3 |
DOIs | |
Publication status | Published - Sept 2011 |
Externally published | Yes |