Towards strongly consistent online HMM parameter estimation using one-step Kerridge inaccuracy

Timothy L. Molloy*, Jason J. Ford

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on the new information-theoretic concept of one-step Kerridge inaccuracy (OKI). Under several regulatory conditions, we establish a convergence result (and some limited strong consistency results) for our proposed online OKI-based parameter estimator. In simulation studies, we illustrate the global convergence behaviour of our proposed estimator and provide a counter-example illustrating the local convergence of other popular HMM parameter estimators.

Original languageEnglish
Pages (from-to)79-93
Number of pages15
JournalSignal Processing
Volume115
DOIs
Publication statusPublished - 1 Oct 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'Towards strongly consistent online HMM parameter estimation using one-step Kerridge inaccuracy'. Together they form a unique fingerprint.

Cite this