TY - GEN
T1 - Tractable multi-agent path planning on grid maps
AU - Wang, Ko Hsin Cindy
AU - Botea, Adi
PY - 2009
Y1 - 2009
N2 - Multi-agent path planning on grid maps is a challenging problem and has numerous real-life applications. Running a centralized, systematic search such as A* is complete and cost-optimal but scales up poorly in practice, since both the search space and the branching factor grow exponentially in the number of mobile units. Decentralized approaches, which decompose a problem into several subproblems, can be faster and can work for larger problems. However, existing decentralized methods offer no guarantees with respect to completeness, running time, and solution quality. To address such limitations, we introduce MAPP, a tractable algorithm for multi-agent path planning on grid maps. We show that MAPP has lowpolynomial worst-case upper bounds for the running time, the memory requirements, and the length of solutions. As it runs in low-polynomial time, MAPP is incomplete in the general case. We identify a class of problems for which our algorithm is complete. We believe that this is the first study that formalises restrictions to obtain a tractable class of multi-agent path planning problems.
AB - Multi-agent path planning on grid maps is a challenging problem and has numerous real-life applications. Running a centralized, systematic search such as A* is complete and cost-optimal but scales up poorly in practice, since both the search space and the branching factor grow exponentially in the number of mobile units. Decentralized approaches, which decompose a problem into several subproblems, can be faster and can work for larger problems. However, existing decentralized methods offer no guarantees with respect to completeness, running time, and solution quality. To address such limitations, we introduce MAPP, a tractable algorithm for multi-agent path planning on grid maps. We show that MAPP has lowpolynomial worst-case upper bounds for the running time, the memory requirements, and the length of solutions. As it runs in low-polynomial time, MAPP is incomplete in the general case. We identify a class of problems for which our algorithm is complete. We believe that this is the first study that formalises restrictions to obtain a tractable class of multi-agent path planning problems.
UR - http://www.scopus.com/inward/record.url?scp=77956049013&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781577354260
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1870
EP - 1875
BT - IJCAI-09 - Proceedings of the 21st International Joint Conference on Artificial Intelligence
PB - International Joint Conferences on Artificial Intelligence
T2 - 21st International Joint Conference on Artificial Intelligence, IJCAI 2009
Y2 - 11 July 2009 through 16 July 2009
ER -