TY - GEN
T1 - Trajectory-based short-sighted probabilistic planning
AU - Trevizan, Felipe W.
AU - Veloso, Manuela M.
PY - 2012
Y1 - 2012
N2 - Probabilistic planning captures the uncertainty of plan execution by probabilistically modeling the effects of actions in the environment, and therefore the probability of reaching different states from a given state and action. In order to compute a solution for a probabilistic planning problem, planners need to manage the uncertainty associated with the different paths from the initial state to a goal state. Several approaches to manage uncertainty were proposed, e.g., consider all paths at once, perform determinization of actions, and sampling. In this paper, we introduce trajectory-based short-sighted Stochastic Shortest Path Problems (SSPs), a novel approach to manage uncertainty for probabilistic planning problems in which states reachable with low probability are substituted by artificial goals that heuristically estimate their cost to reach a goal state. We also extend the theoretical results of Short-Sighted Probabilistic Planner (SSiPP) [1] by proving that SSiPP always finishes and is asymptotically optimal under sufficient conditions on the structure of short-sighted SSPs. We empirically compare SSiPP using trajectorybased short-sighted SSPs with the winners of the previous probabilistic planning competitions and other state-of-the-art planners in the triangle tireworld problems. Trajectory-based SSiPP outperforms all the competitors and is the only planner able to scale up to problem number 60, a problem in which the optimal solution contains approximately 1070 states.
AB - Probabilistic planning captures the uncertainty of plan execution by probabilistically modeling the effects of actions in the environment, and therefore the probability of reaching different states from a given state and action. In order to compute a solution for a probabilistic planning problem, planners need to manage the uncertainty associated with the different paths from the initial state to a goal state. Several approaches to manage uncertainty were proposed, e.g., consider all paths at once, perform determinization of actions, and sampling. In this paper, we introduce trajectory-based short-sighted Stochastic Shortest Path Problems (SSPs), a novel approach to manage uncertainty for probabilistic planning problems in which states reachable with low probability are substituted by artificial goals that heuristically estimate their cost to reach a goal state. We also extend the theoretical results of Short-Sighted Probabilistic Planner (SSiPP) [1] by proving that SSiPP always finishes and is asymptotically optimal under sufficient conditions on the structure of short-sighted SSPs. We empirically compare SSiPP using trajectorybased short-sighted SSPs with the winners of the previous probabilistic planning competitions and other state-of-the-art planners in the triangle tireworld problems. Trajectory-based SSiPP outperforms all the competitors and is the only planner able to scale up to problem number 60, a problem in which the optimal solution contains approximately 1070 states.
UR - http://www.scopus.com/inward/record.url?scp=84877747378&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781627480031
T3 - Advances in Neural Information Processing Systems
SP - 3248
EP - 3256
BT - Advances in Neural Information Processing Systems 25
T2 - 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Y2 - 3 December 2012 through 6 December 2012
ER -