Trajectory-based short-sighted probabilistic planning

Felipe W. Trevizan, Manuela M. Veloso

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Probabilistic planning captures the uncertainty of plan execution by probabilistically modeling the effects of actions in the environment, and therefore the probability of reaching different states from a given state and action. In order to compute a solution for a probabilistic planning problem, planners need to manage the uncertainty associated with the different paths from the initial state to a goal state. Several approaches to manage uncertainty were proposed, e.g., consider all paths at once, perform determinization of actions, and sampling. In this paper, we introduce trajectory-based short-sighted Stochastic Shortest Path Problems (SSPs), a novel approach to manage uncertainty for probabilistic planning problems in which states reachable with low probability are substituted by artificial goals that heuristically estimate their cost to reach a goal state. We also extend the theoretical results of Short-Sighted Probabilistic Planner (SSiPP) [1] by proving that SSiPP always finishes and is asymptotically optimal under sufficient conditions on the structure of short-sighted SSPs. We empirically compare SSiPP using trajectorybased short-sighted SSPs with the winners of the previous probabilistic planning competitions and other state-of-the-art planners in the triangle tireworld problems. Trajectory-based SSiPP outperforms all the competitors and is the only planner able to scale up to problem number 60, a problem in which the optimal solution contains approximately 1070 states.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages3248-3256
Number of pages9
Publication statusPublished - 2012
Externally publishedYes
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: 3 Dec 20126 Dec 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume4
ISSN (Print)1049-5258

Conference

Conference26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Country/TerritoryUnited States
CityLake Tahoe, NV
Period3/12/126/12/12

Fingerprint

Dive into the research topics of 'Trajectory-based short-sighted probabilistic planning'. Together they form a unique fingerprint.

Cite this