Transceiver design for distributed STBC based AF cooperative networks in the presence of timing and frequency offsets

Ali A. Nasir, Hani Mehrpouyan, Salman Durrani, Steven D. Blostein, Rodney A. Kennedy, Björn Ottersten

    Research output: Contribution to journalArticlepeer-review

    20 Citations (Scopus)

    Abstract

    In multi-relay cooperative systems, the signal at the destination is affected by impairments such as multiple channel gains, multiple timing offsets (MTOs), and multiple carrier frequency offsets (MCFOs). In this paper we account for all these impairments and propose a new transceiver structure at the relays and a novel receiver design at the destination in distributed space-time block code (DSTBC) based amplify-and-forward (AF) cooperative networks. The Cramér-Rao lower bounds and a least squares (LS) estimator for the multi-parameter estimation problem are derived. In order to significantly reduce the receiver complexity at the destination, a differential evolution (DE) based estimation algorithm is applied and the initialization and constraints for the convergence of the proposed DE algorithm are investigated. In order to detect the signal from multiple relays in the presence of unknown channels, MTOs, and MCFOs, novel optimal and sub-optimal minimum mean-square error receiver designs at the destination node are proposed. Simulation results show that the proposed estimation and compensation methods achieve full diversity gain in the presence of channel and synchronization impairments in multi-relay AF cooperative networks.

    Original languageEnglish
    Article number6497668
    Pages (from-to)3143-3158
    Number of pages16
    JournalIEEE Transactions on Signal Processing
    Volume61
    Issue number12
    DOIs
    Publication statusPublished - 2013

    Fingerprint

    Dive into the research topics of 'Transceiver design for distributed STBC based AF cooperative networks in the presence of timing and frequency offsets'. Together they form a unique fingerprint.

    Cite this