TY - JOUR
T1 - Transceiver design for distributed STBC based AF cooperative networks in the presence of timing and frequency offsets
AU - Nasir, Ali A.
AU - Mehrpouyan, Hani
AU - Durrani, Salman
AU - Blostein, Steven D.
AU - Kennedy, Rodney A.
AU - Ottersten, Björn
PY - 2013
Y1 - 2013
N2 - In multi-relay cooperative systems, the signal at the destination is affected by impairments such as multiple channel gains, multiple timing offsets (MTOs), and multiple carrier frequency offsets (MCFOs). In this paper we account for all these impairments and propose a new transceiver structure at the relays and a novel receiver design at the destination in distributed space-time block code (DSTBC) based amplify-and-forward (AF) cooperative networks. The Cramér-Rao lower bounds and a least squares (LS) estimator for the multi-parameter estimation problem are derived. In order to significantly reduce the receiver complexity at the destination, a differential evolution (DE) based estimation algorithm is applied and the initialization and constraints for the convergence of the proposed DE algorithm are investigated. In order to detect the signal from multiple relays in the presence of unknown channels, MTOs, and MCFOs, novel optimal and sub-optimal minimum mean-square error receiver designs at the destination node are proposed. Simulation results show that the proposed estimation and compensation methods achieve full diversity gain in the presence of channel and synchronization impairments in multi-relay AF cooperative networks.
AB - In multi-relay cooperative systems, the signal at the destination is affected by impairments such as multiple channel gains, multiple timing offsets (MTOs), and multiple carrier frequency offsets (MCFOs). In this paper we account for all these impairments and propose a new transceiver structure at the relays and a novel receiver design at the destination in distributed space-time block code (DSTBC) based amplify-and-forward (AF) cooperative networks. The Cramér-Rao lower bounds and a least squares (LS) estimator for the multi-parameter estimation problem are derived. In order to significantly reduce the receiver complexity at the destination, a differential evolution (DE) based estimation algorithm is applied and the initialization and constraints for the convergence of the proposed DE algorithm are investigated. In order to detect the signal from multiple relays in the presence of unknown channels, MTOs, and MCFOs, novel optimal and sub-optimal minimum mean-square error receiver designs at the destination node are proposed. Simulation results show that the proposed estimation and compensation methods achieve full diversity gain in the presence of channel and synchronization impairments in multi-relay AF cooperative networks.
KW - Cooperative communication
KW - Cramér-Rao lower bound (CRLB)
KW - amplify-and-forward (AF)
KW - differential evolution (DE)
KW - distributed space-time block code (DSTBC)
KW - receiver design
UR - http://www.scopus.com/inward/record.url?scp=84878283004&partnerID=8YFLogxK
U2 - 10.1109/TSP.2013.2258015
DO - 10.1109/TSP.2013.2258015
M3 - Article
SN - 1053-587X
VL - 61
SP - 3143
EP - 3158
JO - IEEE Transactions on Signal Processing
JF - IEEE Transactions on Signal Processing
IS - 12
M1 - 6497668
ER -