Transductive learning for zero-shot object detection

Shafin Rahman, Salman Khan, Nick Barnes

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    70 Citations (Scopus)

    Abstract

    Zero-shot object detection (ZSD) is a relatively unexplored research problem as compared to the conventional zero-shot recognition task. ZSD aims to detect previously unseen objects during inference. Existing ZSD works suffer from two critical issues: (a) large domain-shift between the source (seen) and target (unseen) domains since the two distributions are highly mismatched. (b) the learned model is biased against unseen classes, therefore in generalized ZSD settings, where both seen and unseen objects co-occur during inference, the learned model tends to misclassify unseen to seen categories. This brings up an important question: How effectively can a transductive setting address the aforementioned problems? To the best of our knowledge, we are the first to propose a transductive zero-shot object detection approach that convincingly reduces the domain-shift and model-bias against unseen classes. Our approach is based on a self-learning mechanism that uses a novel hybrid pseudo-labeling technique. It progressively updates learned model parameters by associating unlabeled data samples to their corresponding classes. During this process, our technique makes sure that knowledge that was previously acquired on the source domain is not forgotten. We report significant 'relative' improvements of 34.9% and 77.1% in terms of mAP and recall rates over the previous best inductive models on MSCOCO dataset.

    Original languageEnglish
    Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages6081-6090
    Number of pages10
    ISBN (Electronic)9781728148038
    DOIs
    Publication statusPublished - Oct 2019
    Event17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of
    Duration: 27 Oct 20192 Nov 2019

    Publication series

    NameProceedings of the IEEE International Conference on Computer Vision
    Volume2019-October
    ISSN (Print)1550-5499

    Conference

    Conference17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
    Country/TerritoryKorea, Republic of
    CitySeoul
    Period27/10/192/11/19

    Fingerprint

    Dive into the research topics of 'Transductive learning for zero-shot object detection'. Together they form a unique fingerprint.

    Cite this