TRPM2 channels mediate acetaminophen-induced liver damage

Ehsan Kheradpezhouh, Linlin Ma, Arthur Morphett, Greg J. Barritt, Grigori Y. Rychkov*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

83 Citations (Scopus)

Abstract

Acetaminophen (paracetamol) is the most frequently used analgesic and antipyretic drug available over the counter. At the same time, acetaminophen overdose is the most common cause of acute liver failure and the leading cause of chronic liver damage requiring liver transplantation in developed countries. Acetaminophen overdose causes a multitude of interrelated biochemical reactions in hepatocytes including the formation of reactive oxygen species, deregulation of Ca2+ homeostasis, covalent modification and oxidation of proteins, lipid peroxidation, and DNA fragmentation. Although an increase in intracellular Ca2+ concentration in hepatocytes is a known consequence of acetaminophen overdose, its importance in acetaminophen-induced liver toxicity is not well understood, primarily due to lack of knowledge about the source of the Ca2+ rise. Here we report that the channel responsible for Ca2+ entry in hepatocytes in acetaminophen overdose is the Transient Receptor Potential Melanostatine 2 (TRPM2) cation channel. We show by whole-cell patch clamping that treatment of hepatocytes with acetaminophen results in activation of a cation current similar to that activated by H2O2 or the intracellular application of ADP ribose. siRNA-mediated knockdown of TRPM2 in hepatocytes inhibits activation of the current by either acetaminophen or H2O2. In TRPM2 knockout mice, acetaminophen-induced liver damage, assessed by the blood concentration of liver enzymes and liver histology, is significantly diminished compared with wild-type mice. The presented data strongly suggest that TRPM2 channels are essential in the mechanism of acetaminophen-induced hepatocellular death.

Original languageEnglish
Pages (from-to)3176-3181
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume111
Issue number8
DOIs
Publication statusPublished - 25 Feb 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'TRPM2 channels mediate acetaminophen-induced liver damage'. Together they form a unique fingerprint.

Cite this