TY - JOUR
T1 - Tc enhancement in multiphonon-mediated multiband superconductivity
AU - Bussmann-Holder, A.
AU - Gulacsi, M.
AU - Bishop, A. R.
PY - 2002/11
Y1 - 2002/11
N2 - We study a model of a multiband Fermi-surface structure to investigate its effect on the superconducting transition temperature in the limit of a high number of bands. We consider a simple limit consisting of an infinite number of identical locally pairwise coupled bands with intraband and interband hopping and a multiband generalized Bardeen-Cooper-Schrieffer Hamiltonian. The self-consistent mean-field system of equations which determines the intraband and interband order parameters decouples to two independent equations, unless the interband hopping integral is non-zero, in which case an energetically stable superconducting phase appears, where both the intraband and the interband gaps are non-zero. We demonstrate that for all values of the interband coupling constant the critical transition temperature is enhanced compared with the pure intraband critical transition temperature. The model is equivalent to a multiple momentum exchange originating from the interband coupling and thus modelling a highly anisotropic gap structure.
AB - We study a model of a multiband Fermi-surface structure to investigate its effect on the superconducting transition temperature in the limit of a high number of bands. We consider a simple limit consisting of an infinite number of identical locally pairwise coupled bands with intraband and interband hopping and a multiband generalized Bardeen-Cooper-Schrieffer Hamiltonian. The self-consistent mean-field system of equations which determines the intraband and interband order parameters decouples to two independent equations, unless the interband hopping integral is non-zero, in which case an energetically stable superconducting phase appears, where both the intraband and the interband gaps are non-zero. We demonstrate that for all values of the interband coupling constant the critical transition temperature is enhanced compared with the pure intraband critical transition temperature. The model is equivalent to a multiple momentum exchange originating from the interband coupling and thus modelling a highly anisotropic gap structure.
UR - http://www.scopus.com/inward/record.url?scp=0037058470&partnerID=8YFLogxK
U2 - 10.1080/13642810208223170
DO - 10.1080/13642810208223170
M3 - Article
SN - 1364-2812
VL - 82
SP - 1749
EP - 1754
JO - Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties
JF - Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties
IS - 16
ER -