Abstract
Ultra narrow bandgap III-V semiconductor nanomaterials provide a unique platform for realizing advanced nanoelectronics, thermoelectrics, infrared photodetection, and quantum transport physics. In this work we employ molecular beam epitaxy to synthesize novel nanosheet-like InSb nanostructures exhibiting superior electronic performance. Through careful morphological and crystallographic characterization we show how this unique geometry is the result of a single twinning event in an otherwise pure zinc blende structure. Four-terminal electrical measurements performed in both the Hall and van der Pauw configurations reveal a room temperature electron mobility greater than 12 000 cm2·V-1·s-1. Quantized conductance in a quantum point contact processed with a split-gate configuration is also demonstrated. We thus introduce InSb "nanosails" as a versatile and convenient platform for realizing new device and physics experiments with a strong interplay between electronic and spin degrees of freedom.
Original language | English |
---|---|
Pages (from-to) | 825-833 |
Number of pages | 9 |
Journal | Nano Letters |
Volume | 16 |
Issue number | 2 |
DOIs | |
Publication status | Published - 10 Feb 2016 |