TY - JOUR
T1 - Two genes that regulate exopolysaccharide production in Rhizobium sp. strain NGR234
T2 - DNA sequences and resultant phenotypes
AU - Gray, J. X.
AU - Djordjevic, M. A.
AU - Rolfe, B. G.
PY - 1990
Y1 - 1990
N2 - Two closely linked genes involved in the regulation of exopolysaccharide (EPS) production in Rhizobium sp. strain NGR234, exoX and exoY, were sequenced, and their corresponding phenotypes were investigated. Inhibition of EPS synthesis occurred in wild-type strains when extra copies of exoX were introduced, but only when exoY had been deleted or mutated or was present at a lower copy number. Normal EPS synthesis occurred in Rhizobium sp. when both exoX and exoY were introduced on the same replicon. Surprisingly, the presence of multiple copies of exoY in exoY::Tn5 mutants of NGR234 adversely affected cellular growth. This was apparent when exoY was introduced into exoY mutants on IncP1 vectors, where the copy number was approximately 10, but was not apparent when present on much larger R-prime plasmids with lower copy numbers (approximately 3 per cell). Multiple copies of exoX did not adversely affect cellular growth of any strain. The exoX gene appeared analogous, in size and phenotype, to a previously described Rhizobium leguminosarum biovar phaseoli EPS gene, psi (D. Borthakur and A.W.B. Johnston, Mol. Gen. Genet. 207:149-154, 1987), and the deduced ExoX and Psi shared strikingly similar secondary structures. Despite this, ExoX and Psi showed little homology at the primary amino acid level, except for a central region of 18 amino acids. The interaction of ExoX and ExoY could form the basis of a sensitive regulatory system for EPS biosynthesis. The presence of a multicopy exoX in Rhizobium meliloti and R. fredii similarly abolished EPS biosynthesis in these species.
AB - Two closely linked genes involved in the regulation of exopolysaccharide (EPS) production in Rhizobium sp. strain NGR234, exoX and exoY, were sequenced, and their corresponding phenotypes were investigated. Inhibition of EPS synthesis occurred in wild-type strains when extra copies of exoX were introduced, but only when exoY had been deleted or mutated or was present at a lower copy number. Normal EPS synthesis occurred in Rhizobium sp. when both exoX and exoY were introduced on the same replicon. Surprisingly, the presence of multiple copies of exoY in exoY::Tn5 mutants of NGR234 adversely affected cellular growth. This was apparent when exoY was introduced into exoY mutants on IncP1 vectors, where the copy number was approximately 10, but was not apparent when present on much larger R-prime plasmids with lower copy numbers (approximately 3 per cell). Multiple copies of exoX did not adversely affect cellular growth of any strain. The exoX gene appeared analogous, in size and phenotype, to a previously described Rhizobium leguminosarum biovar phaseoli EPS gene, psi (D. Borthakur and A.W.B. Johnston, Mol. Gen. Genet. 207:149-154, 1987), and the deduced ExoX and Psi shared strikingly similar secondary structures. Despite this, ExoX and Psi showed little homology at the primary amino acid level, except for a central region of 18 amino acids. The interaction of ExoX and ExoY could form the basis of a sensitive regulatory system for EPS biosynthesis. The presence of a multicopy exoX in Rhizobium meliloti and R. fredii similarly abolished EPS biosynthesis in these species.
UR - http://www.scopus.com/inward/record.url?scp=0025056588&partnerID=8YFLogxK
U2 - 10.1128/jb.172.1.193-203.1990
DO - 10.1128/jb.172.1.193-203.1990
M3 - Article
C2 - 2152899
AN - SCOPUS:0025056588
SN - 0021-9193
VL - 172
SP - 193
EP - 203
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 1
ER -