TY - JOUR
T1 - U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho
AU - Fanning, C. Mark
AU - Link, Paul Karl
PY - 2004/10
Y1 - 2004/10
N2 - Three stratigraphically well defined rocks from the glaciogenic Scout Mountain Member, Neoproterozoic Pocatello Formation, southern Idaho, yielded sensitive, high-resolution ion-microprobe (SHRIMP) U-Pb zircon ages that constrain the age of the upper diamictite and its cap carbonate to between ca. 710 and 667 Ma. (1) Zircons from an epiclastic plagioclase-phyric tuff breccia immediately below glaciogenic Scout Mountain Member diamictite on Oxford Mountain, just north of the Utah border, yield a SHRIMP U-Pb concordia age of 709 ± 5 Ma. (2) A porphyritic rhyolite clast from the upper Scout Mountain Member diamictite at Portneuf Narrows, south of Pocatello, yields a concordia age of 717 ± 4 Ma. (3) The simple igneous zircon population from a reworked fallout tuff bed in the uppermost Scout Mountain Member, 20 m above the upper diamictite and its cap carbonate and immediately below a second cap-like carbonate, has a concordia age of 667 ± 5 Ma. These data support previous interpretations that the Scout Mountain Member glaciation scoured nearby volcanic highlands composed of the bimodal Bannock Volcanic Member and suggest that the volcanism was 717 ± 4 Ma. This age is close to, but distinctly older than, ca. 685 Ma U-Pb SHRIMP ages from the lithostratigraphically correlative Edwardsburg Formation in central Idaho. These data imply that the major rifting phase in this part of western Laurentia spanned 717-685 Ma rather than 800-750 Ma, as previously suggested. Further, because the Scout Mountain succession has been correlated with the Sturtian glacial phase on the basis of lithostratigraphy plus C and Sr isotope values in the carbonates, these data suggest that the Sturtian glacial epoch may have lasted until 670 Ma.
AB - Three stratigraphically well defined rocks from the glaciogenic Scout Mountain Member, Neoproterozoic Pocatello Formation, southern Idaho, yielded sensitive, high-resolution ion-microprobe (SHRIMP) U-Pb zircon ages that constrain the age of the upper diamictite and its cap carbonate to between ca. 710 and 667 Ma. (1) Zircons from an epiclastic plagioclase-phyric tuff breccia immediately below glaciogenic Scout Mountain Member diamictite on Oxford Mountain, just north of the Utah border, yield a SHRIMP U-Pb concordia age of 709 ± 5 Ma. (2) A porphyritic rhyolite clast from the upper Scout Mountain Member diamictite at Portneuf Narrows, south of Pocatello, yields a concordia age of 717 ± 4 Ma. (3) The simple igneous zircon population from a reworked fallout tuff bed in the uppermost Scout Mountain Member, 20 m above the upper diamictite and its cap carbonate and immediately below a second cap-like carbonate, has a concordia age of 667 ± 5 Ma. These data support previous interpretations that the Scout Mountain Member glaciation scoured nearby volcanic highlands composed of the bimodal Bannock Volcanic Member and suggest that the volcanism was 717 ± 4 Ma. This age is close to, but distinctly older than, ca. 685 Ma U-Pb SHRIMP ages from the lithostratigraphically correlative Edwardsburg Formation in central Idaho. These data imply that the major rifting phase in this part of western Laurentia spanned 717-685 Ma rather than 800-750 Ma, as previously suggested. Further, because the Scout Mountain succession has been correlated with the Sturtian glacial phase on the basis of lithostratigraphy plus C and Sr isotope values in the carbonates, these data suggest that the Sturtian glacial epoch may have lasted until 670 Ma.
KW - Cap carbonates
KW - Idaho
KW - Neoproterozoic glaciation
KW - SHRIMP geochronology
KW - U-Pb
UR - http://www.scopus.com/inward/record.url?scp=7444245470&partnerID=8YFLogxK
U2 - 10.1130/G20609.1
DO - 10.1130/G20609.1
M3 - Article
SN - 0091-7613
VL - 32
SP - 881
EP - 884
JO - Geology
JF - Geology
IS - 10
ER -