TY - JOUR
T1 - Ultrafast pulsed laser deposition of chalcogenide glass films for low-loss optical waveguides
AU - Luther-Davies, B.
AU - Kolev, V. Z.
AU - Lederer, M. J.
AU - Yinlan, R.
AU - Samoc, M.
AU - Jarvis, R. A.
AU - Rode, A. V.
AU - Giesekus, J.
AU - Du, K. M.
AU - Duering, M.
PY - 2003
Y1 - 2003
N2 - Ultra-fast pulsed laser deposition using high-repetition-rate short-pulse lasers has been shown to provide high optical quality, super smooth thin films free of scattering centres. The optimized process conditions require short ps or sub-ps pulses with repetition rate in the range 1-100 MHz, depending on the target material. Ultra-fast pulsed laser deposition was used to successfully deposit atomicaliy-smooth, Smicron thick As2S3 films. The as-deposited films were photosensitive at wavelengths close to the band edge (≈520 nm) and waveguides could be directly patterned into them by photo-darkening using an Argon ion or frequency doubled Nd:YAG laser. The linear and nonlinear optical properties of the films were measured as well as the photosensitivity of the material. The optical losses in photo-darkened waveguides were <0.2 dB/cm at wavelengths beyond 1200nm and <0.1 dB/cm in as-deposited films. The third order nonlinearity, n2,As2S3, was measured using both four-wave mixing and the z-scan technique and varied with wavelength from 100 to 200 times fused silica (n2,Silica ≈3×10-16 cm2/W) between 1100nm and 1100nm with low nonlinear absorption. Encouraged by the Ultrafast laser deposition results, we have built a new specialized mode-locked picosecond laser system for deposition of optical films and for laser formation of nanoclusters. The newly developed "state of the art" powerful Nd:YVO laser can operate over a wide range of wavelengths, intensities, and repetition rates in MHz range. A brief description of the 50W laser installation is presented.
AB - Ultra-fast pulsed laser deposition using high-repetition-rate short-pulse lasers has been shown to provide high optical quality, super smooth thin films free of scattering centres. The optimized process conditions require short ps or sub-ps pulses with repetition rate in the range 1-100 MHz, depending on the target material. Ultra-fast pulsed laser deposition was used to successfully deposit atomicaliy-smooth, Smicron thick As2S3 films. The as-deposited films were photosensitive at wavelengths close to the band edge (≈520 nm) and waveguides could be directly patterned into them by photo-darkening using an Argon ion or frequency doubled Nd:YAG laser. The linear and nonlinear optical properties of the films were measured as well as the photosensitivity of the material. The optical losses in photo-darkened waveguides were <0.2 dB/cm at wavelengths beyond 1200nm and <0.1 dB/cm in as-deposited films. The third order nonlinearity, n2,As2S3, was measured using both four-wave mixing and the z-scan technique and varied with wavelength from 100 to 200 times fused silica (n2,Silica ≈3×10-16 cm2/W) between 1100nm and 1100nm with low nonlinear absorption. Encouraged by the Ultrafast laser deposition results, we have built a new specialized mode-locked picosecond laser system for deposition of optical films and for laser formation of nanoclusters. The newly developed "state of the art" powerful Nd:YVO laser can operate over a wide range of wavelengths, intensities, and repetition rates in MHz range. A brief description of the 50W laser installation is presented.
UR - http://www.scopus.com/inward/record.url?scp=0345357868&partnerID=8YFLogxK
U2 - 10.1557/proc-780-y4.1
DO - 10.1557/proc-780-y4.1
M3 - Conference article
AN - SCOPUS:0345357868
SN - 0272-9172
VL - 780
SP - 131
EP - 142
JO - Materials Research Society Symposium - Proceedings
JF - Materials Research Society Symposium - Proceedings
T2 - MATERIALS RESEARCH SOCIETY SYMPOSIUM - PROCEEDINGS: Advanced Optical Processing of Materials
Y2 - 22 April 2003 through 23 April 2003
ER -