Unconventional direct synthesis of Ni3N/Ni with N-vacancies for efficient and stable hydrogen evolution

Doudou Zhang, Haobo Li*, Asim Riaz, Astha Sharma, Wensheng Liang, Yuan Wang, Hongjun Chen, Kaushal Vora, Di Yan, Zhen Su, Antonio Tricoli, Chuan Zhao, Fiona J. Beck, Karsten Reuter, Kylie Catchpole*, Siva Karuturi*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    69 Citations (Scopus)

    Abstract

    Transition metal nitrides are a fascinating class of catalyst materials due to their superior catalytic activity, low electrical resistance, good corrosion resistance and earth abundance; however, their conventional synthesis relies on high-temperature nitridation processes in hazardous environments. Here, we report a direct synthesis of Ni3N/Ni enriched with N-vacancies using one-step magnetron sputtering. The surface state of Ni3N(001) with 75% N-vacancies is hydrogen-terminated and exhibits four inequivalent Ni3-hollow sites. This leads to stronger H∗ binding compared to Ni(111), and is affirmed as the most stable surface termination under the electrochemical working conditions (pH ≈ 13.8 and E = -0.1 V) from the Pourbaix diagram. The Ni3N/Ni catalyst shows low crystallinity and good wettability and exhibits a low overpotential of 89 mV vs. RHE at 10 mA cm-2 in 1.0 M KOH with excellent stability over 3 days. This performance closely matches that of the Pt catalyst synthesized under the same conditions and surpasses that of other reported earth-abundant catalysts on planar substrates. The application of Ni3N/Ni as a cocatalyst on Si photocathodes produces an excellent ABPE of 9.3% and over 50 h stability. Moreover, its feasibility for practical application was confirmed with excellent performance on porous substrates and robustness at high operating currents in zero-gap alkaline electrolysis cells. Our work demonstrates a general approach for the feasible synthesis of other transition metal nitride catalysts for electrochemical and photoelectrochemical energy conversion applications.

    Original languageEnglish
    Pages (from-to)185-195
    Number of pages11
    JournalEnergy and Environmental Science
    Volume15
    Issue number1
    DOIs
    Publication statusPublished - Jan 2022

    Fingerprint

    Dive into the research topics of 'Unconventional direct synthesis of Ni3N/Ni with N-vacancies for efficient and stable hydrogen evolution'. Together they form a unique fingerprint.

    Cite this