TY - JOUR
T1 - Uncovering the microbiome of invasive sympatric European brown hares and European rabbits in Australia
AU - Shanmuganandam, Somasundhari
AU - Hu, Yiheng
AU - Strive, Tanja
AU - Schwessinger, Benjamin
AU - Hall, Robyn N.
N1 - Publisher Copyright:
© 2020 Shanmuganandam et al.
PY - 2020
Y1 - 2020
N2 - Background: European brown hares (Lepus europaeus) and European rabbits (Oryctolagus cuniculus) are invasive pest species in Australia, with rabbits having a substantially larger environmental impact than hares. As their spatial distribution in Australia partially overlaps, we conducted a comparative microbiome study to determine how the composition of gastrointestinal microbiota varies between these species, since this may indicate species differences in diet, physiology, and other internal and external factors. Methods: We analysed the faecal microbiome of nine wild hares and twelve wild rabbits from a sympatric periurban reserve in Canberra, Australia, using a 16S rRNA amplicon-based sequencing approach. Additionally, we compared the concordance between results from Illumina and Nanopore sequencing platforms. Results: We identified significantly more variation in faecal microbiome composition between individual rabbits compared to hares, despite both species occupying a similar habitat. The faecal microbiome in both species was dominated by the phyla Firmicutes and Bacteroidetes, typical of many vertebrates. Many phyla, including Actinobacteria, Proteobacteria and Patescibacteria, were shared between rabbits and hares. In contrast, bacteria from phylum Verrucomicrobia were present only in rabbits, while phyla Lentisphaerae and Synergistetes were represented only in hares. We did not identify phylum Spirochaetes in Australian hares; this phylum was previously shown to be present at high relative abundance in European hare faecal samples. These differences in the composition of faecal microbiota may be indicative of less discriminate foraging behaviour in rabbits, which in turn may enable them to adapt quicker to new environments, and may reflect the severe environmental impacts that this species has in Australia.
AB - Background: European brown hares (Lepus europaeus) and European rabbits (Oryctolagus cuniculus) are invasive pest species in Australia, with rabbits having a substantially larger environmental impact than hares. As their spatial distribution in Australia partially overlaps, we conducted a comparative microbiome study to determine how the composition of gastrointestinal microbiota varies between these species, since this may indicate species differences in diet, physiology, and other internal and external factors. Methods: We analysed the faecal microbiome of nine wild hares and twelve wild rabbits from a sympatric periurban reserve in Canberra, Australia, using a 16S rRNA amplicon-based sequencing approach. Additionally, we compared the concordance between results from Illumina and Nanopore sequencing platforms. Results: We identified significantly more variation in faecal microbiome composition between individual rabbits compared to hares, despite both species occupying a similar habitat. The faecal microbiome in both species was dominated by the phyla Firmicutes and Bacteroidetes, typical of many vertebrates. Many phyla, including Actinobacteria, Proteobacteria and Patescibacteria, were shared between rabbits and hares. In contrast, bacteria from phylum Verrucomicrobia were present only in rabbits, while phyla Lentisphaerae and Synergistetes were represented only in hares. We did not identify phylum Spirochaetes in Australian hares; this phylum was previously shown to be present at high relative abundance in European hare faecal samples. These differences in the composition of faecal microbiota may be indicative of less discriminate foraging behaviour in rabbits, which in turn may enable them to adapt quicker to new environments, and may reflect the severe environmental impacts that this species has in Australia.
KW - 16S rRNA
KW - Illumina
KW - Invasive species
KW - Lagomorphs
KW - Microbiome
KW - Nanopore
UR - http://www.scopus.com/inward/record.url?scp=85090776916&partnerID=8YFLogxK
U2 - 10.7717/peerj.9564
DO - 10.7717/peerj.9564
M3 - Article
SN - 2167-8359
VL - 8
JO - PeerJ
JF - PeerJ
M1 - e9564
ER -