Understanding the implied volatility surface for options on a diversified index

David Heath*, Eckhard Platen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

This paper describes a two-factor model for a diversified index that attempts to explain both the leverage effect and the implied volatility skews that are characteristic of index options. Our formulation is based on an analysis of the growth optimal portfolio and a corresponding random market activity time where the discounted growth optimal portfolio is expressed as a time transformed squared Bessel process of dimension four. It turns out that for this index model an equivalent risk neutral martingale measure does not exist because the corresponding Radon-Nikodym derivative process is a strict local martingale. However, a consistent pricing and hedging framework is established by using the benchmark approach. The proposed model, which includes a random initial condition for market activity, generates implied volatility surfaces for European call and put options that are typically observed in real markets. The paper also examines the price differences of binary options for the proposed model and their Black-Scholes counterparts.

Original languageEnglish
Pages (from-to)55-77
Number of pages23
JournalAsia-Pacific Financial Markets
Volume11
Issue number1
DOIs
Publication statusPublished - Mar 2004
Externally publishedYes

Fingerprint

Dive into the research topics of 'Understanding the implied volatility surface for options on a diversified index'. Together they form a unique fingerprint.

Cite this