TY - JOUR
T1 - Unitary Anchored Planar Algebras
AU - Henriques, André
AU - Penneys, David
AU - Tener, James
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/6
Y1 - 2024/6
N2 - In our previous article (http://arxiv.org/abs/1607.06041), we established an equivalence between pointed pivotal module tensor categories and anchored planar algebras. This article introduces the notion of unitarity for both module tensor categories and anchored planar algebras, and establishes the unitary analog of the above equivalence. Our constructions use Baez’s 2-Hilbert spaces (i.e., semisimple C∗-categories equipped with unitary traces), the unitary Yoneda embedding, and the notion of unitary adjunction for dagger functors between 2-Hilbert spaces.
AB - In our previous article (http://arxiv.org/abs/1607.06041), we established an equivalence between pointed pivotal module tensor categories and anchored planar algebras. This article introduces the notion of unitarity for both module tensor categories and anchored planar algebras, and establishes the unitary analog of the above equivalence. Our constructions use Baez’s 2-Hilbert spaces (i.e., semisimple C∗-categories equipped with unitary traces), the unitary Yoneda embedding, and the notion of unitary adjunction for dagger functors between 2-Hilbert spaces.
UR - http://www.scopus.com/inward/record.url?scp=85194564114&partnerID=8YFLogxK
U2 - 10.1007/s00220-024-04985-w
DO - 10.1007/s00220-024-04985-w
M3 - Article
AN - SCOPUS:85194564114
SN - 0010-3616
VL - 405
JO - Communications in Mathematical Physics
JF - Communications in Mathematical Physics
IS - 6
M1 - 137
ER -