TY - GEN
T1 - Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro
AU - Zheng, Zhedong
AU - Zheng, Liang
AU - Yang, Yi
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/12/22
Y1 - 2017/12/22
N2 - The main contribution of this paper is a simple semisupervised pipeline that only uses the original training set without collecting extra data. It is challenging in 1) how to obtain more training data only from the training set and 2) how to use the newly generated data. In this work, the generative adversarial network (GAN) is used to generate unlabeled samples. We propose the label smoothing regularization for outliers (LSRO). This method assigns a uniform label distribution to the unlabeled images, which regularizes the supervised model and improves the baseline. We verify the proposed method on a practical problem: person re-identification (re-ID). This task aims to retrieve a query person from other cameras. We adopt the deep convolutional generative adversarial network (DCGAN) for sample generation, and a baseline convolutional neural network (CNN) for representation learning. Experiments show that adding the GAN-generated data effectively improves the discriminative ability of learned CNN embeddings. On three large-scale datasets, Market- 1501, CUHK03 and DukeMTMC-reID, we obtain +4.37%, +1.6% and +2.46% improvement in rank-1 precision over the baseline CNN, respectively. We additionally apply the proposed method to fine-grained bird recognition and achieve a +0.6% improvement over a strong baseline. The code is available at https://github.com/layumi/ Person-reID-GAN.
AB - The main contribution of this paper is a simple semisupervised pipeline that only uses the original training set without collecting extra data. It is challenging in 1) how to obtain more training data only from the training set and 2) how to use the newly generated data. In this work, the generative adversarial network (GAN) is used to generate unlabeled samples. We propose the label smoothing regularization for outliers (LSRO). This method assigns a uniform label distribution to the unlabeled images, which regularizes the supervised model and improves the baseline. We verify the proposed method on a practical problem: person re-identification (re-ID). This task aims to retrieve a query person from other cameras. We adopt the deep convolutional generative adversarial network (DCGAN) for sample generation, and a baseline convolutional neural network (CNN) for representation learning. Experiments show that adding the GAN-generated data effectively improves the discriminative ability of learned CNN embeddings. On three large-scale datasets, Market- 1501, CUHK03 and DukeMTMC-reID, we obtain +4.37%, +1.6% and +2.46% improvement in rank-1 precision over the baseline CNN, respectively. We additionally apply the proposed method to fine-grained bird recognition and achieve a +0.6% improvement over a strong baseline. The code is available at https://github.com/layumi/ Person-reID-GAN.
UR - http://www.scopus.com/inward/record.url?scp=85032302943&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2017.405
DO - 10.1109/ICCV.2017.405
M3 - Conference contribution
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 3774
EP - 3782
BT - Proceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 16th IEEE International Conference on Computer Vision, ICCV 2017
Y2 - 22 October 2017 through 29 October 2017
ER -