Unsupervised Dense Prediction Using Differentiable Normalized Cuts

Yanbin Liu*, Stephen Gould

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

With the emergent attentive property of self-supervised Vision Transformer (ViT), Normalized Cuts (NCut) has resurfaced as a powerful tool for unsupervised dense prediction. However, the pre-trained ViT backbone (e.g., DINO) is frozen in existing methods, which makes the feature extractor suboptimal for dense prediction tasks. In this paper, we propose using Differentiable Normalized Cuts for self-supervised dense feature learning that can improve the dense prediction capability of existing pre-trained models. First, we review an efficient gradient formulation for the classical NCut algorithm. This formulation only leverages matrices computed and stored in the forward pass, making the backward pass highly efficient. Second, with NCut gradients in hand, we design a self-supervised dense feature learning architecture to finetune pre-trained models. Given two random augmented crops of an image, the architecture performs RoIAlign and NCut to generate two foreground masks of their overlapping region. Last, we propose a mask-consistency loss to back-propagate through NCut and RoIAlign for model training. Experiments show that our framework generalizes to various pre-training methods (DINO, MoCo and MAE), network configurations (ResNet, ViT-S and ViT-B), and tasks (unsupervised saliency detection, object discovery and semantic segmentation). Moreover, we achieved state-of-the-art results on unsupervised dense prediction benchmarks.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer Science and Business Media Deutschland GmbH
Pages287-304
Number of pages18
ISBN (Print)9783031736605
DOIs
Publication statusPublished - 2025
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: 29 Sept 20244 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15098 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period29/09/244/10/24

Fingerprint

Dive into the research topics of 'Unsupervised Dense Prediction Using Differentiable Normalized Cuts'. Together they form a unique fingerprint.

Cite this