Unsupervised primitive discovery for improved 3D generative modeling

Salman H. Khan, Yulan Guo, Munawar Hayat, Nick Barnes

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    37 Citations (Scopus)

    Abstract

    3D shape generation is a challenging problem due to the high-dimensional output space and complex part configurations of real-world objects. As a result, existing algorithms experience difficulties in accurate generative modeling of 3D shapes. Here, we propose a novel factorized generative model for 3D shape generation that sequentially transitions from coarse to fine scale shape generation. To this end, we introduce an unsupervised primitive discovery algorithm based on a higher-order conditional random field model. Using the primitive parts for shapes as attributes, a parameterized 3D representation is modeled in the first stage. This representation is further refined in the next stage by adding fine scale details to shape. Our results demonstrate improved representation ability of the generative model and better quality samples of newly generated 3D shapes. Further, our primitive generation approach can accurately parse common objects into a simplified representation.

    Original languageEnglish
    Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
    PublisherIEEE Computer Society
    Pages9731-9740
    Number of pages10
    ISBN (Electronic)9781728132938
    DOIs
    Publication statusPublished - Jun 2019
    Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
    Duration: 16 Jun 201920 Jun 2019

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    Volume2019-June
    ISSN (Print)1063-6919

    Conference

    Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
    Country/TerritoryUnited States
    CityLong Beach
    Period16/06/1920/06/19

    Fingerprint

    Dive into the research topics of 'Unsupervised primitive discovery for improved 3D generative modeling'. Together they form a unique fingerprint.

    Cite this