Upright and inverted polygon microscope (UNI-SCOPE)

Tao Xu, Yongxiao Li, Woei Ming Lee*

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Abstract

    Cellular imaging in living animal has opened up a wide range of avenues to study cells in its microenvironment. High speed laser scanning microscopy possess the ability to observe fast real-Time biological phenomena such as cell movements, cell division, cells death. Due to the anatomical difference of difference organs in small animals, there is a need to engineer a flexible microscope that can readily adapt to different imaging position. For videorate imaging, the design of a flexible microscope depends mainly on scanning devices. Existing multiphoton microscope platforms (i.e. Thorlabs Bergamo® II Series) uses a rotating objective mount to conform of the specimens. This is possible because of the compact resonant mirror scanners. However, for varying imaging speed using a polygon microscope, this approach is not feasible due to high rotating speed. As such, we developed a dual objective microscope system that can achieve both upright and inverted, we termed it as UNI-SCOPE. The integrated platform can achieve flexible scanning speed of up to 120 FPS with an overall footprint of 450mm∗600mm∗450mm. Using a dual objective approach, users can tailor the platform to the imaging sample.

    Original languageEnglish
    Title of host publicationBiophotonics Australasia 2019
    EditorsEwa M. Goldys, Brant C. Gibson
    PublisherSPIE
    ISBN (Electronic)9781510631441
    DOIs
    Publication statusPublished - 2019
    EventBiophotonics Australasia 2019 - Melbourne, Australia
    Duration: 9 Dec 201912 Dec 2019

    Publication series

    NameProceedings of SPIE - The International Society for Optical Engineering
    Volume11202
    ISSN (Print)0277-786X
    ISSN (Electronic)1996-756X

    Conference

    ConferenceBiophotonics Australasia 2019
    Country/TerritoryAustralia
    CityMelbourne
    Period9/12/1912/12/19

    Fingerprint

    Dive into the research topics of 'Upright and inverted polygon microscope (UNI-SCOPE)'. Together they form a unique fingerprint.

    Cite this