Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic

Caspar J. Van Lissa*, Wolfgang Stroebe, Michelle R. vanDellen, N. Pontus Leander, Maximilian Agostini, Tim Draws, Andrii Grygoryshyn, Ben Gützgow, Jannis Kreienkamp, Clara S. Vetter, Georgios Abakoumkin, Jamilah Hanum Abdul Khaiyom, Vjolica Ahmedi, Handan Akkas, Carlos A. Almenara, Mohsin Atta, Sabahat Cigdem Bagci, Sima Basel, Edona Berisha Kida, Allan B.I. BernardoNicholas R. Buttrick, Phatthanakit Chobthamkit, Hoon Seok Choi, Mioara Cristea, Sára Csaba, Kaja Damnjanović, Ivan Danyliuk, Arobindu Dash, Daniela Di Santo, Karen M. Douglas, Violeta Enea, Daiane Gracieli Faller, Gavan J. Fitzsimons, Alexandra Gheorghiu, Ángel Gómez, Ali Hamaidia, Qing Han, Mai Helmy, Joevarian Hudiyana, Bertus F. Jeronimus, Ding Yu Jiang, Veljko Jovanović, Željka Kamenov, Anna Kende, Shian Ling Keng, Tra Thi Thanh Kieu, Yasin Koc, Kamila Kovyazina, Inna Kozytska, Michelle K. Ryan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Fingerprint

Dive into the research topics of 'Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic'. Together they form a unique fingerprint.

Psychology

Medicine and Dentistry