@inproceedings{53221c561dea42e3810d3a5a96039f8c,
title = "Using metric space indexing for complete and efficient record linkage",
abstract = "Record linkage is the process of identifying records that refer to the same real-world entities in situations where entity identifiers are unavailable. Records are linked on the basis of similarity between common attributes, with every pair being classified as a link or non-link depending on their similarity. Linkage is usually performed in a three-step process: first, groups of similar candidate records are identified using indexing, then pairs within the same group are compared in more detail, and finally classified. Even state-of-the-art indexing techniques, such as locality sensitive hashing, have potential drawbacks. They may fail to group together some true matching records with high similarity, or they may group records with low similarity, leading to high computational overhead. We propose using metric space indexing (MSI) to perform complete linkage, resulting in a parameter-free process combining indexing, comparison and classification into a single step delivering complete and efficient record linkage. An evaluation on real-world data from several domains shows that linkage using MSI can yield better quality than current indexing techniques, with similar execution cost, without the need for domain knowledge or trial and error to configure the process.",
keywords = "Blocking, Data matching, Entity resolution, Similarity search",
author = "{\"O}zg{\"u}r Akg{\"u}n and Alan Dearle and Graham Kirby and Peter Christen",
note = "Publisher Copyright: {\textcopyright} Springer International Publishing AG, part of Springer Nature 2018.; 22nd Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2018 ; Conference date: 03-06-2018 Through 06-06-2018",
year = "2018",
doi = "10.1007/978-3-319-93040-4_8",
language = "English",
isbn = "9783319930398",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "89--101",
editor = "Webb, {Geoffrey I.} and Dinh Phung and Mohadeseh Ganji and Lida Rashidi and Tseng, {Vincent S.} and Bao Ho",
booktitle = "Advances in Knowledge Discovery and Data Mining - 22nd Pacific-Asia Conference, PAKDD 2018, Proceedings",
address = "Germany",
}