TY - GEN
T1 - Utility-based interference management for full-duplex multicell networks
AU - Nguyen, Thien D.
AU - Ngo, Duy T.
AU - Nasir, Ali A.
AU - Khan, Jamil Y.
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/9/9
Y1 - 2015/9/9
N2 - This paper develops power allocation schemes to manage the signal interference in a multiuser multicell network, where full-duplex transceivers are implemented at all base stations (BSs) and user equipment units (UEs). Beside the acute intracell and intercell interferences, the significant residual self-interference at the full-duplex receivers is the limiting factor for any network performance enhancement. To help control such severe interferences, we propose to associate each bidirectional full-duplex link with a net utility function, which consists of a utility and a flexible price. While the utility corresponds to the link throughput, the proposed logarithmic cost function allows for a moderate penalty. Our aim is to maximize the sum network utility subject to the power constraints at the BSs and UEs. To solve the highly nonconvex problem formulation, we propose two successive convex approximation (SCA) algorithms based on the difference-of-convex-functions programming and the geometric programming. In each algorithm, we specifically tailor the generic SCA framework and transform our formulated nonconvex problem into a sequence of convex power allocation programs. We prove that the developed iterative algorithms converge to locally optimal solutions that satisfy the Karush-Kuhn-Tucker conditions of the original problem. Numerical results confirm that our utility-based solutions markedly improve the network throughput by effectively managing the interferences.
AB - This paper develops power allocation schemes to manage the signal interference in a multiuser multicell network, where full-duplex transceivers are implemented at all base stations (BSs) and user equipment units (UEs). Beside the acute intracell and intercell interferences, the significant residual self-interference at the full-duplex receivers is the limiting factor for any network performance enhancement. To help control such severe interferences, we propose to associate each bidirectional full-duplex link with a net utility function, which consists of a utility and a flexible price. While the utility corresponds to the link throughput, the proposed logarithmic cost function allows for a moderate penalty. Our aim is to maximize the sum network utility subject to the power constraints at the BSs and UEs. To solve the highly nonconvex problem formulation, we propose two successive convex approximation (SCA) algorithms based on the difference-of-convex-functions programming and the geometric programming. In each algorithm, we specifically tailor the generic SCA framework and transform our formulated nonconvex problem into a sequence of convex power allocation programs. We prove that the developed iterative algorithms converge to locally optimal solutions that satisfy the Karush-Kuhn-Tucker conditions of the original problem. Numerical results confirm that our utility-based solutions markedly improve the network throughput by effectively managing the interferences.
UR - http://www.scopus.com/inward/record.url?scp=84953720819&partnerID=8YFLogxK
U2 - 10.1109/ICC.2015.7248605
DO - 10.1109/ICC.2015.7248605
M3 - Conference contribution
T3 - IEEE International Conference on Communications
SP - 1914
EP - 1919
BT - 2015 IEEE International Conference on Communications, ICC 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - IEEE International Conference on Communications, ICC 2015
Y2 - 8 June 2015 through 12 June 2015
ER -