Abstract
Following up large numbers of candidates in continuous gravitational-wave searches presents a challenge, particularly in regard to computational power and the time required to manually scrutinize each of the candidates. It is important to design and test good follow-up procedures that are safe (i.e., minimize false dismissals) and computationally efficient across many search configurations. We investigate two follow-up procedures, or "vetoes,"both of which exploit the Doppler modulation predicted in astrophysical signals. In particular, we introduce the concept of using an effective point spread function as part of our veto criteria. We take advantage of a well-established semicoherent search algorithm based on a hidden Markov model to study various search configurations and to generalize the veto criteria by considering the overall veto performance in terms of efficiency and safety. The results can serve as a guideline for follow-up studies in future continuous gravitational-wave searches using a hidden Markov model algorithm. The results also apply qualitatively to other semicoherent search algorithms.
Original language | English |
---|---|
Article number | 123011 |
Journal | Physical Review D |
Volume | 106 |
Issue number | 12 |
DOIs | |
Publication status | Published - 15 Dec 2022 |