Abstract
Variable scan rate (0.1-500 V s-1) cyclic voltammetry experiments were performed on a series of model tocopherol (vitamin E) compounds with differing degrees of methyl substitution around the aromatic (phenolic) ring. α-Tocopherol, with a fully methylated aromatic ring, produced stable phenoxonium cations upon oxidation in CH3CN, and was modeled via an ECE mechanism (where "E" represents an electron transfer and "C" a chemical step). Compounds with less methyl substitution around the aromatic ring were more reactive following oxidation, and formed additional oxidation products (hemiketals and p-quinones), and were modeled according to a more complicated ECECC mechanism. The equilibrium and rate constants associated with the chemical steps were estimated by digital simulations of the variable scan rate data over a range of temperatures (T = 253-313 K) in acetonitrile containing 0.5 M Bu4NPF6 as the supporting electrolyte. The relative lifetimes of the phenoxonium cations of tocol and the tocopherols were compared with theoretical results obtained from molecular orbital calculations.
Original language | English |
---|---|
Pages (from-to) | 6847-6855 |
Number of pages | 9 |
Journal | Journal of Physical Chemistry B |
Volume | 112 |
Issue number | 22 |
DOIs | |
Publication status | Published - 5 Jun 2008 |