Variation in the components of relative growth rate in ten Acacia species from contrasting environments

O. K. Atkin*, M. Schortemeyer, N. McFarlane, J. R. Evans

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    53 Citations (Scopus)

    Abstract

    In this study we assessed the inherent relative growth rate (RGR) under controlled environment conditions of 10 contrasting Acacia species from semi-arid and mesic environments. For several of the species, compound pinnate leaves produced early in the seedling stage, were gradually replaced by phyllodes (expanded petioles that form simple lamina). Other species either did not form phyllodes, or only did so to a minor degree by the end of the study. Phyllode production was dominant in the four slow-growing Acacia species from semi-arid environments (A. aneura, A. colei, A. coriacea and A. tetragonophylla), with leaf production being exclusive or dominant in five (A. dealbata, A. implexa, A. mearnsii, A. melanoxylon and A. irrorata) of the six faster-growing species from mesic environments. The exception was A. saligna which was fast growing but did produce phyllodes. From a carbon economy perspective, slow growth in the semi-arid species was not associated with lower net assimilation rates or less plant mass allocated to foliage. Rather, the primary factor associated with their slow growth was a smaller foliage area per unit foliage mass. This was true for comparisons based on the mean over all harvests or at set plant masses. The production of phyllodes by the semi-arid species substantially reduced foliage area per unit foliage mass, as this was lower for phyllodes than leaves in all species. To assess the impact that phyllode production had on ontogenetic changes in RGR, we modelled the situation where only leaves were formed. This analysis showed that changing from leaves to phyllodes substantially reduced the RGR. There was little difference in plant nitrogen concentration or the ratio of foliage nitrogen to plant nitrogen between the species. This resulted in foliage nitrogen productivity (dry mass gain per unit foliage nitrogen and time) being directly proportional to foliage area per unit foliage mass between species. We concluded that a smaller foliage area per unit foliage mass and phyllode production are the primary factors associated with lower RGR in contrasting Acacia species.

    Original languageEnglish
    Pages (from-to)1007-1017
    Number of pages11
    JournalPlant, Cell and Environment
    Volume21
    Issue number10
    DOIs
    Publication statusPublished - Oct 1998

    Fingerprint

    Dive into the research topics of 'Variation in the components of relative growth rate in ten Acacia species from contrasting environments'. Together they form a unique fingerprint.

    Cite this