VELOCE's novel IFU-fitted fibre feed

Scott Case*, Vladimir Churilov, Ross Zhelem, Anthony Horton, Jon Lawrence, Michael Edgar, Tony Farrell, Lewis Waller, Yevgen Kripak, Doug Gray, Christopher Ramage, Steve Lee, Mike Ireland, Christian Schwab, Chris Tinney

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

VELOCE is an IFU fibre feed and spectrograph for the AAT that is replacing CYCLOPS2. It is being constructed by the AAO and ANU. In this paper we discuss the design and engineering of the IFU/fibre feed components of the cable. We discuss the mode scrambling gain obtained with octagonal core fibres and how these octagonal core fibres should be spliced to regular circular core fibres to ensure maximum throughput for the cable using specialised splicing techniques. In addition we also describe a new approach to manufacturing a precision 1D/2D array of optical fibres for some applications in IFU manufacture and slit manufacture using 3D printed fused silica substrates, allowing for a cheap substitute to expensive lithographic etching in silicon at the expense of positional accuracy. We also discuss the Menlo Systems laser comb which employs endlessly-singlemode fibre to eliminate modal noise associated with multimode fibre transmission to provide the VELOCE spectrograph with a stable and repeatable source of wavelength calibration lines.

Original languageEnglish
Title of host publicationGround-based and Airborne Instrumentation for Astronomy VII
EditorsLuc Simard, Luc Simard, Christopher J. Evans, Hideki Takami
PublisherSPIE
ISBN (Print)9781510619579
DOIs
Publication statusPublished - 2018
EventGround-based and Airborne Instrumentation for Astronomy VII 2018 - Austin, United States
Duration: 10 Jun 201814 Jun 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10702
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceGround-based and Airborne Instrumentation for Astronomy VII 2018
Country/TerritoryUnited States
CityAustin
Period10/06/1814/06/18

Fingerprint

Dive into the research topics of 'VELOCE's novel IFU-fitted fibre feed'. Together they form a unique fingerprint.

Cite this