Verifying global minima for L2 minimization problems

Richard Hartley*, Yongduek Seo

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    15 Citations (Scopus)

    Abstract

    We consider the least-squares (L2) triangulation problem and structure-and-motion with known rotatation, or known plane. Although optimal algorithms have been given for these algorithms under an L-infinity cost function, finding optimal least-squares (L2) solutions to these problems is difficult, since the cost functions are not convex, and in the worst case can have multiple minima. Iterative methods can usually be used to find a good solution, but this may be a local minimum. This paper provides a method for verifying whether a local-minimum solution is globally optimal, by providing a simple and rapid test involving the Hessian of the cost function. In tests of a data set involving 277,000 independent triangulation problems, it is shown that the test verifies the global optimality of an iterative solution in over 99.9% of the cases.

    Original languageEnglish
    Title of host publication26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
    DOIs
    Publication statusPublished - 2008
    Event26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR - Anchorage, AK, United States
    Duration: 23 Jun 200828 Jun 2008

    Publication series

    Name26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

    Conference

    Conference26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
    Country/TerritoryUnited States
    CityAnchorage, AK
    Period23/06/0828/06/08

    Fingerprint

    Dive into the research topics of 'Verifying global minima for L2 minimization problems'. Together they form a unique fingerprint.

    Cite this