Abstract
We report the experimental evidence for creation of Warm Dense Matter (WDM) in ultrafast laser-induced micro-explosion inside a sapphire (Al 2O 3) crystal. We show that the WDM can be formed by a 100nJ fs-pulse if the following conditions are satisfied: (1) the laser pulse is tightly focused to inside of the bulk of transparent material so the intensity at focus is two orders of magnitude higher than the optical breakdown threshold; (2) the pulse duration is shorter than the electron-ion energy exchange time; and, (3) the absorbed energy density is above the Young's modulus for the material studied. The empty void created inside a sapphire crystal surrounded by a shell of compressed material provides the direct evidence of the maximum pressure above the Young's modulus of sapphire (∼400GPa). Synchrotron X-ray diffraction (XRD) analysis of the shell revealed the presence of novel super-dense bcc-Al crystalline phase predicted at pressures above ∼380GPa theoretically, which has never been observed experimentally before neither in nature in laboratory experiments. These results show that confined micro-explosion induced by tightly focussed fs-laser inside a transparent solid opens new routes for synthesis of new materials and study of WDM at a laboratory bench-top.
Original language | English |
---|---|
Pages (from-to) | 13-17 |
Number of pages | 5 |
Journal | High Energy Density Physics |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - Mar 2012 |