TY - JOUR
T1 - Water-soluble visible light sensitive photoinitiating system based on charge transfer complexes for the 3d printing of hydrogels
AU - Chen, Hong
AU - Vahdati, Mehdi
AU - Xiao, Pu
AU - Dumur, Frédéric
AU - Lalevée, Jacques
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/9
Y1 - 2021/9
N2 - The development of visible-light 3D printing technology by using water-soluble initiating systems has attracted widespread attention due to their potential applications in the manufacture of hydrogels. Besides, at present, the preparation of water-soluble photoinitiators suitable for visible light irradiation (such as LEDs) still remains a challenge. Therefore, this work is devoted to developing water-soluble photoinitiators (PI)/photoinitiating systems (PIS) upon irradiation with a LED @ 405 nm. In detail, a new water-slightly-soluble chalcone derivative dye [(E)-3-(4-(dimethylamino) phenyl)-1-(4-(2-(2-(2-methoxyethoxy) ethoxy) ethoxy) phenyl) prop-2-en-1-one] was synthesized here and used as a PI with a water-soluble coinitiator, i.e., triethanolamine (TEA) which was also used as an electron donor. When combined together, a charge transfer complex (CTC) formed immediately which exhibited excellent initiating ability for the free radical photopolymerization of poly(ethyleneglycol)diacrylate (PEG-DA). In light of the powerful CTC effect, the [dye-TEA] CTC could not only exhibit enhanced water solubility and mechanical properties but could also be effectively applied for 3D printing. This CTC system is environmentally friendly and cost-saving which demonstrates a great potential to prepare hydrogels via photopolymerization.
AB - The development of visible-light 3D printing technology by using water-soluble initiating systems has attracted widespread attention due to their potential applications in the manufacture of hydrogels. Besides, at present, the preparation of water-soluble photoinitiators suitable for visible light irradiation (such as LEDs) still remains a challenge. Therefore, this work is devoted to developing water-soluble photoinitiators (PI)/photoinitiating systems (PIS) upon irradiation with a LED @ 405 nm. In detail, a new water-slightly-soluble chalcone derivative dye [(E)-3-(4-(dimethylamino) phenyl)-1-(4-(2-(2-(2-methoxyethoxy) ethoxy) ethoxy) phenyl) prop-2-en-1-one] was synthesized here and used as a PI with a water-soluble coinitiator, i.e., triethanolamine (TEA) which was also used as an electron donor. When combined together, a charge transfer complex (CTC) formed immediately which exhibited excellent initiating ability for the free radical photopolymerization of poly(ethyleneglycol)diacrylate (PEG-DA). In light of the powerful CTC effect, the [dye-TEA] CTC could not only exhibit enhanced water solubility and mechanical properties but could also be effectively applied for 3D printing. This CTC system is environmentally friendly and cost-saving which demonstrates a great potential to prepare hydrogels via photopolymerization.
KW - Charge transfer complexes
KW - Photopolymerization
KW - Visible light
KW - Water-soluble photoinitiating system
UR - http://www.scopus.com/inward/record.url?scp=85115628874&partnerID=8YFLogxK
U2 - 10.3390/polym13183195
DO - 10.3390/polym13183195
M3 - Article
SN - 2073-4360
VL - 13
JO - Polymers
JF - Polymers
IS - 18
M1 - 3195
ER -