TY - GEN
T1 - Weakly-Supervised Semantic Segmentation by Iteratively Mining Common Object Features
AU - Wang, Xiang
AU - You, Shaodi
AU - Li, Xi
AU - Ma, Huimin
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/12/14
Y1 - 2018/12/14
N2 - Weakly-supervised semantic segmentation under image tags supervision is a challenging task as it directly associates high-level semantic to low-level appearance. To bridge this gap, in this paper, we propose an iterative bottom-up and top-down framework which alternatively expands object regions and optimizes segmentation network. We start from initial localization produced by classification networks. While classification networks are only responsive to small and coarse discriminative object regions, we argue that, these regions contain significant common features about objects. So in the bottom-up step, we mine common object features from the initial localization and expand object regions with the mined features. To supplement non-discriminative regions, saliency maps are then considered under Bayesian framework to refine the object regions. Then in the top-down step, the refined object regions are used as supervision to train the segmentation network and to predict object masks. These object masks provide more accurate localization and contain more regions of object. Further, we take these object masks as initial localization and mine common object features from them. These processes are conducted iteratively to progressively produce fine object masks and optimize segmentation networks. Experimental results on Pascal VOC 2012 dataset demonstrate that the proposed method outperforms previous state-of-the-art methods by a large margin.
AB - Weakly-supervised semantic segmentation under image tags supervision is a challenging task as it directly associates high-level semantic to low-level appearance. To bridge this gap, in this paper, we propose an iterative bottom-up and top-down framework which alternatively expands object regions and optimizes segmentation network. We start from initial localization produced by classification networks. While classification networks are only responsive to small and coarse discriminative object regions, we argue that, these regions contain significant common features about objects. So in the bottom-up step, we mine common object features from the initial localization and expand object regions with the mined features. To supplement non-discriminative regions, saliency maps are then considered under Bayesian framework to refine the object regions. Then in the top-down step, the refined object regions are used as supervision to train the segmentation network and to predict object masks. These object masks provide more accurate localization and contain more regions of object. Further, we take these object masks as initial localization and mine common object features from them. These processes are conducted iteratively to progressively produce fine object masks and optimize segmentation networks. Experimental results on Pascal VOC 2012 dataset demonstrate that the proposed method outperforms previous state-of-the-art methods by a large margin.
UR - http://www.scopus.com/inward/record.url?scp=85062871794&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2018.00147
DO - 10.1109/CVPR.2018.00147
M3 - Conference contribution
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 1354
EP - 1362
BT - Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PB - IEEE Computer Society
T2 - 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Y2 - 18 June 2018 through 22 June 2018
ER -