TY - GEN
T1 - Which Features of Postural Sway are Effective in Distinguishing Parkinson's Disease Patients from Controls? An Experimental Investigation
AU - Ge, Wenbo
AU - Apthorp, Deborah
AU - Lueck, Christian
AU - Suominen, Hanna
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - Computer-assisted quantification and analysis of postural sway may support identifying individuals affected by Parkinson's disease (PD). Balancing, and its associated postural sway, is a complex process that requires the cooperation of several sensory systems in the brain. Unsurprisingly, a neurodegenerative disease can affect such processes, manifesting itself in the postural sway of affected individuals. Different aspects of postural sway can be quantified and represented as features, which can be used to distinguish between patients and controls. Our aim, inspired by a recent systematic literature review, was to experimentally determine whether sampling frequency and visual state had a meaningful impact on the effectiveness of features in distinguishing between the two groups, and whether overall discriminability could be improved using machine learning. We extracted 102 unique features from 78 postural sway recordings and found that the effectiveness (quantified by an effect size and the average area under the receiver operating characteristic curve) with a sampling frequency of 10 Hz was superior to 20, 40, and 100 Hz, though not with high confidence (quantified through Bayesian analysis). We also concluded that effectiveness under the eyes closed condition was higher than the eyes open condition (confirmed through Bayesian analysis), though combining features from both conditions was superior. Finally, we showed that using machine learning to analyse multiple features through feature selection resulted in higher discriminability in almost all cases. The code for these experiments have been released at https://github.com/Wenbo-G/pd-sway-analysis under the MIT license. When using our code, please cite this paper.
AB - Computer-assisted quantification and analysis of postural sway may support identifying individuals affected by Parkinson's disease (PD). Balancing, and its associated postural sway, is a complex process that requires the cooperation of several sensory systems in the brain. Unsurprisingly, a neurodegenerative disease can affect such processes, manifesting itself in the postural sway of affected individuals. Different aspects of postural sway can be quantified and represented as features, which can be used to distinguish between patients and controls. Our aim, inspired by a recent systematic literature review, was to experimentally determine whether sampling frequency and visual state had a meaningful impact on the effectiveness of features in distinguishing between the two groups, and whether overall discriminability could be improved using machine learning. We extracted 102 unique features from 78 postural sway recordings and found that the effectiveness (quantified by an effect size and the average area under the receiver operating characteristic curve) with a sampling frequency of 10 Hz was superior to 20, 40, and 100 Hz, though not with high confidence (quantified through Bayesian analysis). We also concluded that effectiveness under the eyes closed condition was higher than the eyes open condition (confirmed through Bayesian analysis), though combining features from both conditions was superior. Finally, we showed that using machine learning to analyse multiple features through feature selection resulted in higher discriminability in almost all cases. The code for these experiments have been released at https://github.com/Wenbo-G/pd-sway-analysis under the MIT license. When using our code, please cite this paper.
KW - bioinformatics
KW - biomarkers
KW - feature extraction
KW - machine learning
KW - neurology
KW - predictive models
KW - signal analysis
KW - statistical analysis
UR - http://www.scopus.com/inward/record.url?scp=85125175385&partnerID=8YFLogxK
U2 - 10.1109/BIBM52615.2021.9669828
DO - 10.1109/BIBM52615.2021.9669828
M3 - Conference contribution
T3 - Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
SP - 860
EP - 867
BT - Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
A2 - Huang, Yufei
A2 - Kurgan, Lukasz
A2 - Luo, Feng
A2 - Hu, Xiaohua Tony
A2 - Chen, Yidong
A2 - Dougherty, Edward
A2 - Kloczkowski, Andrzej
A2 - Li, Yaohang
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
Y2 - 9 December 2021 through 12 December 2021
ER -