Word-level deep sign language recognition from video: A new large-scale dataset and methods comparison

Dongxu Li, Cristian Rodriguez Opazo, Xin Yu, Hongdong Li

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    332 Citations (Scopus)

    Abstract

    Vision-based sign language recognition aims at helping the deaf people to communicate with others. However, most existing sign language datasets are limited to a small number of words. Due to the limited vocabulary size, models learned from those datasets cannot be applied in practice. In this paper, we introduce a new large-scale Word-Level American Sign Language (WLASL) video dataset, containing more than 2000 words performed by over 100 signers. This dataset will be made publicly available to the research community. To our knowledge, it is by far the largest public ASL dataset to facilitate word-level sign recognition research.Based on this new large-scale dataset, we are able to experiment with several deep learning methods for word-level sign recognition and evaluate their performances in large scale scenarios. Specifically we implement and compare two different models, i.e., (i) holistic visual appearance based approach, and (ii) 2D human pose based approach. Both models are valuable baselines that will benefit the community for method benchmarking. Moreover, we also propose a novel pose-based temporal graph convolution networks (Pose-TGCN) that model spatial and temporal dependencies in human pose trajectories simultaneously, which has further boosted the performance of the pose-based method. Our results show that pose-based and appearance-based models achieve comparable performances up to 62.63% at top-10 accuracy on 2, 000 words/glosses, demonstrating the validity and challenges of our dataset. Our dataset and baseline deep models are available at https://dxli94.github.io/WLASL/.

    Original languageEnglish
    Title of host publicationProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages1448-1458
    Number of pages11
    ISBN (Electronic)9781728165530
    DOIs
    Publication statusPublished - Mar 2020
    Event2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020 - Snowmass Village, United States
    Duration: 1 Mar 20205 Mar 2020

    Publication series

    NameProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020

    Conference

    Conference2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020
    Country/TerritoryUnited States
    CitySnowmass Village
    Period1/03/205/03/20

    Fingerprint

    Dive into the research topics of 'Word-level deep sign language recognition from video: A new large-scale dataset and methods comparison'. Together they form a unique fingerprint.

    Cite this