Abstract
The Young's modulus of thin conical InP nanowires with either wurtzite or mixed "zinc blende/wurtzite" structures was measured. It has been shown that the value of Young's modulus obtained for wurtzite InP nanowires (E[0001] = 130 ± 30 GPa) was similar to the theoretically predicted value for the wurtzite InP material (E[0001] = 120 ± 10 GPa). The Young's modulus of mixed "zinc blende/wurtzite" InP nanowires (E[111] = 65 ± 10 GPa) appeared to be 40% less than the theoretically predicted value for the zinc blende InP material (E[111] = 110 GPa). An advanced method for measuring the Young's modulus of thin and flexible nanostructures is proposed. It consists of measuring the flexibility (the inverse of stiffness) profiles 1/k(x) by the scanning probe microscopy with precise control of loading force in nanonewton range followed by simulations.
Original language | English |
---|---|
Pages (from-to) | 3441-3446 |
Number of pages | 6 |
Journal | Nano Letters |
Volume | 17 |
Issue number | 6 |
DOIs | |
Publication status | Published - 14 Jun 2017 |
Externally published | Yes |