Zero-Shot Kernel Learning

Hongguang Zhang, Piotr Koniusz

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    92 Citations (Scopus)

    Abstract

    In this paper, we address an open problem of zero-shot learning. Its principle is based on learning a mapping that associates feature vectors extracted from i.e. images and attribute vectors that describe objects and/or scenes of interest. In turns, this allows classifying unseen object classes and/or scenes by matching feature vectors via mapping to a newly defined attribute vector describing a new class. Due to importance of such a learning task, there exist many methods that learn semantic, probabilistic, linear or piece-wise linear mappings. In contrast, we apply well-established kernel methods to learn a non-linear mapping between the feature and attribute spaces. We propose an easy learning objective inspired by the Linear Discriminant Analysis, Kernel-Target Alignment and Kernel Polarization methods [12, 8, 4] that promotes incoherence. We evaluate the performance of our algorithm on the Polynomial as well as shift-invariant Gaussian and Cauchy kernels. Despite simplicity of our approach, we obtain state-of-the-art results on several zero-shot learning datasets and benchmarks including a recent AWA2 dataset [45].

    Original languageEnglish
    Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    PublisherIEEE Computer Society
    Pages7670-7679
    Number of pages10
    ISBN (Electronic)9781538664209
    DOIs
    Publication statusPublished - 14 Dec 2018
    Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
    Duration: 18 Jun 201822 Jun 2018

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    ISSN (Print)1063-6919

    Conference

    Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    Country/TerritoryUnited States
    CitySalt Lake City
    Period18/06/1822/06/18

    Fingerprint

    Dive into the research topics of 'Zero-Shot Kernel Learning'. Together they form a unique fingerprint.

    Cite this