TY - GEN
T1 - Zero-Shot Kernel Learning
AU - Zhang, Hongguang
AU - Koniusz, Piotr
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/12/14
Y1 - 2018/12/14
N2 - In this paper, we address an open problem of zero-shot learning. Its principle is based on learning a mapping that associates feature vectors extracted from i.e. images and attribute vectors that describe objects and/or scenes of interest. In turns, this allows classifying unseen object classes and/or scenes by matching feature vectors via mapping to a newly defined attribute vector describing a new class. Due to importance of such a learning task, there exist many methods that learn semantic, probabilistic, linear or piece-wise linear mappings. In contrast, we apply well-established kernel methods to learn a non-linear mapping between the feature and attribute spaces. We propose an easy learning objective inspired by the Linear Discriminant Analysis, Kernel-Target Alignment and Kernel Polarization methods [12, 8, 4] that promotes incoherence. We evaluate the performance of our algorithm on the Polynomial as well as shift-invariant Gaussian and Cauchy kernels. Despite simplicity of our approach, we obtain state-of-the-art results on several zero-shot learning datasets and benchmarks including a recent AWA2 dataset [45].
AB - In this paper, we address an open problem of zero-shot learning. Its principle is based on learning a mapping that associates feature vectors extracted from i.e. images and attribute vectors that describe objects and/or scenes of interest. In turns, this allows classifying unseen object classes and/or scenes by matching feature vectors via mapping to a newly defined attribute vector describing a new class. Due to importance of such a learning task, there exist many methods that learn semantic, probabilistic, linear or piece-wise linear mappings. In contrast, we apply well-established kernel methods to learn a non-linear mapping between the feature and attribute spaces. We propose an easy learning objective inspired by the Linear Discriminant Analysis, Kernel-Target Alignment and Kernel Polarization methods [12, 8, 4] that promotes incoherence. We evaluate the performance of our algorithm on the Polynomial as well as shift-invariant Gaussian and Cauchy kernels. Despite simplicity of our approach, we obtain state-of-the-art results on several zero-shot learning datasets and benchmarks including a recent AWA2 dataset [45].
UR - http://www.scopus.com/inward/record.url?scp=85059384156&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2018.00800
DO - 10.1109/CVPR.2018.00800
M3 - Conference contribution
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 7670
EP - 7679
BT - Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PB - IEEE Computer Society
T2 - 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Y2 - 18 June 2018 through 22 June 2018
ER -