TY - JOUR
T1 - ZFIRE
T2 - The Evolution of the Stellar Mass Tully-Fisher Relation to Redshift ∼2.2
AU - Straatman, Caroline M.S.
AU - Glazebrook, Karl
AU - Kacprzak, Glenn G.
AU - Labbé, Ivo
AU - Nanayakkara, Themiya
AU - Alcorn, Leo
AU - Cowley, Michael
AU - Kewley, Lisa J.
AU - Spitler, Lee R.
AU - Tran, Kim Vy H.
AU - Yuan, Tiantian
N1 - Publisher Copyright:
©2017. The American Astronomical Society. All rights reserved.
PY - 2017/4/10
Y1 - 2017/4/10
N2 - Using observations made with MOSFIRE on Keck I as part of the ZFIRE survey, we present the stellar mass TullyFisher relation at 2.0 < z < 2.5. The sample was drawn from a stellar-mass-limited, Ks-band-selected catalog from ZFOURGE over the CANDELS area in the COSMOS field. We model the shear of the Hα emission line to derive rotational velocities at 2.2 the scale radius of an exponential disk (V2.2). We correct for the blurring effect of a 2D point-spread function (PSF) and the fact that the MOSFIRE PSF is better approximated by a Moffat than a Gaussian, which is more typically assumed for natural seeing. We find for the Tully-Fisher relation at 2.0 < z < 2.5 that log V2.2 = (2.18 ± 0.051)+(0.193 ± 0.108)(logM/M -10) and infer an evolution of the zero-point of DM/M = -0.25 ± 0.16 dex or DM M = -0.39 ± 0.21 dex compared to z = 0 when adopting a fixed slope of 0.29 or 1/4.5, respectively. We also derive the alternative kinematic estimator S0.5, with a best-fit relation log S0.5 = (2.06 ± 0.032) + (0.211 ± 0.086) (logM M - 10), and infer an evolution of DM M = -0.45 ± 0.13 dex compared to z < 1.2 if we adopt a fixed slope. We investigate and review various systematics, such as PSF effects, projection effects, systematics related to stellar mass derivation, selection biases, and slope. We find that discrepancies between the various literature values are reduced when taking these into account. Our observations correspond well with the gradual evolution predicted by semianalytic models.
AB - Using observations made with MOSFIRE on Keck I as part of the ZFIRE survey, we present the stellar mass TullyFisher relation at 2.0 < z < 2.5. The sample was drawn from a stellar-mass-limited, Ks-band-selected catalog from ZFOURGE over the CANDELS area in the COSMOS field. We model the shear of the Hα emission line to derive rotational velocities at 2.2 the scale radius of an exponential disk (V2.2). We correct for the blurring effect of a 2D point-spread function (PSF) and the fact that the MOSFIRE PSF is better approximated by a Moffat than a Gaussian, which is more typically assumed for natural seeing. We find for the Tully-Fisher relation at 2.0 < z < 2.5 that log V2.2 = (2.18 ± 0.051)+(0.193 ± 0.108)(logM/M -10) and infer an evolution of the zero-point of DM/M = -0.25 ± 0.16 dex or DM M = -0.39 ± 0.21 dex compared to z = 0 when adopting a fixed slope of 0.29 or 1/4.5, respectively. We also derive the alternative kinematic estimator S0.5, with a best-fit relation log S0.5 = (2.06 ± 0.032) + (0.211 ± 0.086) (logM M - 10), and infer an evolution of DM M = -0.45 ± 0.13 dex compared to z < 1.2 if we adopt a fixed slope. We investigate and review various systematics, such as PSF effects, projection effects, systematics related to stellar mass derivation, selection biases, and slope. We find that discrepancies between the various literature values are reduced when taking these into account. Our observations correspond well with the gradual evolution predicted by semianalytic models.
KW - galaxies: evolution
KW - galaxies: high-redshift
KW - galaxies: kinematics and dynamics
UR - http://www.scopus.com/inward/record.url?scp=85018489894&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/aa643e
DO - 10.3847/1538-4357/aa643e
M3 - Article
SN - 0004-637X
VL - 839
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 57
ER -