Abstract
Yulong ore-bearing porphyries, along the northwestern extension of the Red River-Ailao Shan fault system in eastern Tibet, consist of five porphyry deposits, containing a total of more than 8 million tons of copper resources. U-Th-Pb laser inductively coupled plasma mass spectrometry dating of zircon shows that the porphyries were emplaced in Early Tertiary (41.2-36.9 Ma), covering a period of ∼4.3 Ma, with formation ages decreasing systematically from northwest to southeast. The start of porphyry magmatism coincided with the onset of transpressional movement along the Red River-Ailao Shan fault system, implying a close link between these two events. Age sequence in intrusions can be plausibly explained by assuming that a region of melting in the lower northwestern plate moved southeasternward along the Tuoba-Mangkang fault relative to the upper plate. Zircon grains from the Yulong ore-bearing porphyries have higher Ce4+/Ce3+ than those from barren porphyries in the region. This suggests that the ore-bearing porphyries crystallized from a relatively oxidized magma, which has important implications for future ore exploration in the region and other Cu deposits in convergent margin environments in general.
Original language | English |
---|---|
Pages (from-to) | 152-159 |
Number of pages | 8 |
Journal | Mineralium Deposita |
Volume | 41 |
Issue number | 2 |
DOIs | |
Publication status | Published - May 2006 |