Abstract
We show that the R-matrix which intertwines two n-by-Nn-1 state cyclic L-operators related with a generalization of Uq(sl(n)) algebra can be considered as a Boltzmann weight of four-spin box for a lattice model with two-spin interaction just as the R-matrix of the checkerboard chiral Potts model. The rapidity variables lie on the algebraic curve of the genus g=N2(n-1)((n-1)N-n)+1 defined by 2 n-3 independent moduli. This curve is a natural generalization of the curve which appeared in the chiral Potts model. Factorization properties of the L-operator and its connection to the SOS models are also discussed.
Original language | English |
---|---|
Pages (from-to) | 393-408 |
Number of pages | 16 |
Journal | Communications in Mathematical Physics |
Volume | 138 |
Issue number | 2 |
DOIs | |
Publication status | Published - May 1991 |
Externally published | Yes |